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ABSTRACT 
 

Distribution of income is among the most important issues in welfare economics.  It is discussed that for 
more equal distribution of income and welfare government should redistribute income and to achieve 
more equality and promote total utility of the society.  Economic literature provides different ways to 
measure income inequality.  While there are alternative methods, there is no best way to calculate the 
inequality index.  Most common inequality indices provide information about points on the distribution 
function and analyze the inequality of income without any reference to the amount of the money needed to 
improve the distribution.  
 In this paper, we identify an income inequality index.  Using this index, we will estimate the Lorenz 
Curve function parameters and show how much transfer payment is needed to achieve a desired 
distribution of income consistent with the perceived economic goals of the society. 
Therefore, we design a model to estimate Lorenz Curve and find a fiscal-compensation-based index for 
reduction of the degree of inequality.  By this approach, any Census summary data can be used to 
measure the distribution of income.  Using our calculated implied-inequality-index, we may redistribute a 
percentage of income to the lower income group and thereby improve the distribution. 
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1.  INTRODUCTION 
 
Estimation of the Lorenz curve is a challenge and is coupled with some difficulties.  To estimate, first we 
need to define an appropriate functional form that can accept different curvatures.  Moreover, to generate 
the necessary data set for estimation of the corresponding parameters, a large scale of computation on 
sample income data is inevitable.  In this paper, we introduce a shortcut and use the probability density 
function of population income to estimate the Lorenz function parameters.  The continuous L1 norm 
smoothing method will be developed to estimate the regression parameters.  We use two different 
probability density functions: (a) Pareto density distribution function that is integrable and (b) log-normal 
function that is more suitable for a wider range of income but is not integrable.  In the latter case, we need 
to define a general Lorenz functional form and apply the continuous L1 norm estimation of linear one and 
two parameters models for a discrete data to corresponding parameters.  The method is applied to 
estimate the Lorenz functional form proposed by Gupta (1984) and Bidabad and Bidabad (1989).  We can 
use the functional form and parameters of probability distribution function of income to determine the L1 
norm approximation of the corresponding Lorenz curve of the population. 
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In the next step, an implied inequality index is introduced.  Most common inequality indices provide 
comparative information about the distribution of inequality without any reference to the amount of the 
money needed to improve the distribution.  In this paper, we identify an income inequality index to show 
how much transfer payment is needed to achieve a desired distribution of income consistent with the 
perceived economic equality goals of the policy-maker. 
 
2.  REVIEW  
 
Distribution of income is central to one of the most enduring issues in economics.  The degree of income 
inequality can be illustrated with a Lorenz curve.  The Lorenz curve is a graphical representation of the 
cumulative income distribution function.  It shows what portion of the total income y is received by the 
bottom percentages of the households.  The percentages of households are plotted on horizontal axis, and 
the percentages of earned incomes are plotted on the vertical axis as figure 1 shows. 
 

Figure 1: Lorenz Curve 

 
The income inequality shown by the Lorenz curve can be measured by Gini ratio.  This coefficient is a 
measure to express distribution inequality.  It is defined as a ratio between 0 and 1.  Its numerator is the 
area between the Lorenz curve and the diagonal line, which is the uniform distribution line; and the 
denominator is the area under the uniform distribution line.  Since the skewness of income distribution is 
persistently exhibited for different populations, the Lorenz curve becomes a method to analyze the skew 
distributions.  It is discussed that Pearsonian family distributions are rival functions to explain income 
distribution.  There is also a relation between the area under the Lorenz curve and the corresponding 
probability distribution function (see, Kendall and Stuart (1977)).  That is, when the probability 
distribution function is known, we may find the corresponding Lorenz curve and Gini coefficient as well. 
Estimation of the Lorenz curve is confronted with some difficulties.  For this estimation, we should define 
an appropriate functional form that can accept different curvatures.  There is another problem, that is, to 
create large-size dataset for estimating the corresponding parameters of the Lorenz curve, a large amount 
of computation on raw sample income data is inevitable.  Obviously, these problems despite of their 
computational difficulties make the significance of the estimated parameters poor (see, Bidabad and 
Bidabad (1989)).  To avoid this, we try to estimate the functional form of the Lorenz curve by using 
continuous information. 
In this paper, we use the probability density function of population income to estimate the Lorenz 
function parameters.  The continuous L1 norm smoothing method, which will be developed for estimating 
the regression parameters is used to solve this problem.  However, we concentrate on two rival probability 
density functions of Pareto and log-normal.  Since, the former is simply integrable, there is no general 
problem to derive the corresponding Lorenz function and the function is uniquely derived.  However, in 
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the latter case, the log-normal density function which has better performance for full income range than 
Pareto distribution (which better fits to higher income range, (see, Cramer (1973), Singh and Maddala 
(1976), Salem and Mount (1974)), is not integrable and we cannot determine its corresponding Lorenz 
function.  In this regard, we should solve the problem by defining a general Lorenz curve functional form 
and applying the L1 norm smoothing to estimate the corresponding parameters. 
Thus, the continuous L1 norm estimation problems of linear one and two parameter models are solved.  
Bidabad (1988a,b) solved the approximation method for discrete case.  Some directions were also 
proposed by Bidabad (1989a,b) for continuous smoothing case.  Now, the method is applied to estimation 
of the Lorenz curve Gupta (1984) and Bidabad and Bidabad (1989) functional forms.   
To have a better understanding and policy arrangements about the inequality of income distribution in a 
region, it is not enough to know the Lorenz curve and conventional inequality indices.  The redistribution 
policies need to deal with specific budget guidelines to promote the society to a more equal position.  
Economic literature provides different ways to measure income inequality (Atkinson (1970); Sen (1973); 
Cowell (1977)).  Some of the most commonly used measures include the Gini coefficient; the decile ratio; 
the proportions of total income earned by the bottom 50%, 60%, and 70% of households; the Robin Hood 
index; the Atkinson index; and Theil's entropy measure.  The Gini is calculated as the ratio of the area 
between the Lorenz curve and the 45° line, to the whole area below the 45° line.  Kakwani (1980) is some 
recalculation of Gini and measures the length of Lorenz curve.  The Robin Hood index is equivalent to 
the maximum vertical distance between the Lorenz curve and the line of equal incomes.  The Atkinson 
(1970) index is one of the few inequality measures that explicitly incorporate normative judgments about 
social welfare.  It is derived by calculating the so-called equity-sensitive average income, which is 
defined as that level of per capita income, which if enjoyed by everybody would make total welfare 
exactly equal to the total welfare generated by the actual income distribution.  Theil (1967) entropy 
measure derives from the notion of entropy in information theory.   
Obviously, there is no single "best" measure of income inequality.  Some measures (e.g., the Atkinson 
index) are more bottom-sensitive than others are; i.e. more strongly correlated with the extent of poverty.  
The measures perform differently under various types of income transfers.  For instance, the Gini is much 
less sensitive to income transfers between households if they lie near the middle of the income 
distribution compared to the tails.  The Robin Hood index is insensitive with respect to income transfers 
between households on the same side of the mean income, and so on.  While there are alternative 
methods, there is no best way to calculate the inequality index specially concentrating on fiscal view.  
That is they generally analyze the distribution without inferring about the amount of fund needed to 
correct income inequality. 
The viewpoint of this paper is to introduce an implied inequality index, which satisfies these policy 
implications needs.  In the last part of this paper, we design an index that can be used for reduction of the 
degree of inequality.  We show how to use any income census summary data (i.e. the average income and 
the median) to measure the distribution of income and calculate the amount of money needed to be levied 
on rich and then transferred to the poor to promote income distribution of the society.   
 
2. L1 NORM OF CONTINUOUS FUNCTIONS 
 
Generally, Lp norm of a function f(x) (see, Rice and White (1964)) is defined by, 

         ∫ ⎟
⎠
⎞⎜
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p dxxf Pxf )()(
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                                                                                              (1) 

Where, "I" is a closed bounded set.  The L1 norm of f(x) is simply written as, 
         ||f(x)||1 =  ∫ xεI |f(x)|dx                                 (2) 
Suppose, the non-stochastic function f(x,β) and the stochastic disturbance term u form y(x) as follows, 
         y(x) = f(x, β) + u                                                                                  (3) 
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Where, β is unknown parameters vector.  Rewriting u as the residual of y(x)-f(x,β), for L1 norm 
approximation of "β" we should find "β" vector such that the L1 norm of "u" is minimum.  That is, 
         Min:  S= ||u||1 = ||y(x)-f(x,β)||1 = ∫ xεI |y(x)-f(x,β)|dx                               (4) 
          β 
 
3. LINEAR ONE PARAMETER L1 NORM CONTINUOUS SMOOTHING 
 
Redefine f(x,β) as βx and y(x) as the following linear function, 
         y(x) = βx + u                                                                       (5) 
Where, "β" is a single (non-vector) parameter.  Expression (4) reduces to: 
         Min:  S = ||u||1 = ||y(x)- βx||1 = ∫ xεI |y(x)- βx|dx                                                                         (6) 
           β 
The discrete analogue of (6) is solved by Bidabad (1988a,89a,b).  In those papers, we proposed applying 
discrete and regular derivatives to the discrete problem by using a slack variable "t" as a point to 
distinguish negative and positive residuals.  A similar approach is used here to minimize (6).  To do so in 
this case certain Lipschitz conditions are imposed on the functions involved (see, Usow (1967a)).  
Rewrite (6) as follows: 
         Min: S = ∫ xεI |x|  |y(x)/x – β|dx                                                                                                   (7) 
            β 
Let’s define "I" as a closed interval [0,1].  The procedure may be applied to other intervals with no major 
problem (see, Usow (1967a), Hobby and Rice (1965), Kripke and Rivlin (1965)).  To minimize this 
function we should first remove the absolute value sign of the expression after the integral sign.  Since 
"x" belongs to a closed interval "I", both functions, y(x) (which is a linear function of "x") and y(x)/x are 
smooth and continuous.  And since y(x)/x is uniformly increasing or decreasing function of "x", a value 
of tεI can be found to have the following properties, 
     y(x)/x < β       if x < t 
     y(x)/x = β       if x = t                                                  (8) 
     y(x)/x > β       if x > t 
Value of the slack variable "t" actually is the border of negative and positive residuals.  If value of "t" 
were known, when x=t we could calculate optimal value of "β".  Nevertheless, nor "t" neither "β" are 
known.  To solve, according to (8), we can rewrite (7) as two separate definite integrals with different 
upper and lower bounds. 

       
β

Min  S = - ∫
t

0
|x| (y(x)/x - β)dx + ∫

1

t
|x| (y(x)/x - β)dx                  (9) 

Decomposition of (7) into (8) has been done by use of the slack variable "t".  Since both "β" and "t" are 
unknown, to solve (9), we partially differentiate it with respect to "t" and "β".                          

        
β∂
∂S

 = ∫
t

0
|x|dx - ∫

1

t
|x|dx = 0                              (10)               

and using Liebniz rule to differentiate the integrals with respect to their variable bounds "t", yields, 

       0)()(
=⎥⎦

⎤
⎢⎣
⎡ −−⎥⎦

⎤
⎢⎣
⎡ −−=

∂
∂ ββ

t
tyt

t
tyt

t
S

                                                                        (11) 

Since "x" belongs to [0,1], equation (10) can be written as,            

          ∫ ∫ =−
t

t
xdxxdx

0

1
0                                                                                                                  (12) 

Or, 
         ½ t2 - ½ + ½t2 = 0                                                                                                                    (13)                   
                                                                                 
Which yields, 
         22=t                                               (14) 
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Substitute for "t" in equation (11), yields, 

    
22

)22(y
=β                                                                                                                           (15)                     

Given that y(t) is function y(x) evaluated at x=t.  Value of "β" given by (15) is the optimal solution of (6).  
The above procedure in fact is generalization of Laplace weighted median for continuous case. Before 
applying this to Lorenz curve, let us develop the procedure for the two parameters linear model. 
 
4. LINEAR TWO PARAMETERS L1 NORM CONTINUOUS SMOOTHING 
 
To apply the above technique to the linear two parameters model, rewrite (4) as, 
         Min: S=||u||1=||y(x)-α-βx||1=∫ xεI |y(x)-α-βx|dx                         (16) 
         α,β 
Where, "α" and "β" are two single (non-vector) unknown parameters and y(x) and "x" are as before.  
According to Rice (1964c), let f(α*,β*,x) interpolates y(x) at the set of canonical points {xi;i=1,2}, if y(x) 
is such that: y(x)-f(α*,β*,x) changes sign at these xi's and at no other points in [0,1], then f(α*,β*,x) is the 
best L1 norm approximation to y(x) (see also, Usow  (1967a)).  With the help of this rule, if we denote 
these two points to t1 and t2 we can rewrite (16) for I=[0,1] as, 

         S = ∫t1

0
[y(x)-α-βx]dx - ∫tt

2

1

[y(x)-α-βx] dx + ∫
1
2t

[y(x)-α-βx] dx                                        (17) 

Since t1 and t2 are also unknowns, we should minimize S with respect to α, β, t1 and t2.  Taking partial 
derivative of (17) using Liebniz' rule with respect to these variables and equating them to zero, we will 
have, 

 ∫ ∫ ∫ =−+−=
∂
∂ t t

t
t
t dxdxdxS 10 2

1
1
2
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α

                                                                                               (18) 

 ∫ ∫ ∫ =−+−=
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                                                                                                (19) 
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∂
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[ ] 0)(2 22
2

=−−−=
∂
∂

tty
t
S βα                                                                                                     (21) 

Equations (18) through (21) may be solved simultaneously for α, β, t1 and t2.  Thus, we have the following 
system of equations, 
         2t2 - 2t1 - 1 = 0                                                           (22) 
         t2

2 - t1
2 - ½ = 0                                                                                                                        (23) 

         y(t1) - α - βt1 = 0                                                                                                                     (24) 
         y(t2) - α - βt2 = 0                                                                                                                     (25) 
The solutions are: 
         t1=1/4                                                                  (26) 
         t2=3/4                                                                           (27) 
         α = y(3/4)-(3/4)β = y(1/4)-(1/4)β                                                       (28) 
         β = 2[y(3/4)-y(1/4)]                                                                                 (29)    
This procedure may be expanded to include "m" unknown parameters.  Some computational methods for 
solving the different cases of m parameters model are investigated by Ptak (1958), Rice and White 
(1964), Rice (1964a,b,c,69,85), Usow (1967a), Lazarski (1975a,b,c,77) (see also, Hobby and Rice (1965), 
Kripke and Rivlin (1965), Watson (1981)).  Now, let us have a look at Lorenz curve and its proposed 
functional forms.  
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5. LORENZ CURVE 
 
The Lorenz curve for a random variable with probability density function f(v) may be defined as the 
ordered pair.  

    )
)(

)(
),((
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vVVE

vVVP
≤

≤          Rv∈                                                                                     (30) 

 For a continuous density function f(v), (30) can be written as, 

    )))((),(()
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,)(( vxyvx
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∫
∫
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∞− ≡                                                                (31) 

Taguchi (1972a,b,c,73,81,83,87,88) multiplies the second element of (30) by P(V|V≤v) which is not 
correct; his definition of (31) is equivalent to ours.  We denote (31) by ordered pair (x(v),y(x(v))) where 
x(v) and y(x(v)) are its elements.  "x" is a function which maps "v" to x(v) and "y" is a function which 
maps x(v) to y(x(v)).  The function y(x(v)) is simply the Lorenz curve function.  For the explicit function 
for the Lorenz curve, we use the form introduced by Gupta (1984) and a modified version, which benefits 
from certain properties. 
Gupta (1984) proposed the functional form, 
         y= xAx-1         A>1                                                               (32) 
The modified version of Bidabad and Bidabad (1989) suggests the following functional form: 
         y= xBAx-1       B≥ 1, A≥ 1                                                       (33) 
To estimate the above functions we need discrete data from the population, to construct relevant x and y 
vectors to estimate "A" of (32) or "A" and "B" of (33).  On the other hand if the probability distribution of 
income is known, we can estimate the Lorenz curve by using the continuous L1 norm smoothing method 
for continuous functions.  
In the following section we proceed to apply this method to estimate the parameters "A" of (32), and "A" 
and "B" of (33) by using the information of probability density function of income. 
 
6. CONTINUOUS L1 NORM SMOOTHING OF LORENZ CURVE 
 
To estimate the Lorenz curve parameters when income probability density function is known, we cannot 
always take straightforward steps.  When the probability density function is easily integrable, there is no 
major problem in advance.  We can find the functional relationship between the two elements of (31) by 
simple mathematical derivation.  However, when integrals of (31) are not obtainable, another procedure is 
to be adopted. 
Suppose that income of a society is distributed with probability density function f(w).  This density 
function may be a skewed function such as Pareto or log-normal, as follows 
         f(w) = θkθw-θ-1,       w,k>0, θ>0                                               (34) 
         f(w) = [1/wσ√(2π)]exp{-[ln(w)-μ]2/2σ2},   wε(0,∞), με(-∞,+∞), σ>0                                    (35) 
These two distributions are known as good candidates for representing distribution of personal income.  
In the case of Pareto density function of (34), we can simply derive the Lorenz curve function as follows. 
Let F(w) denote the Pareto distribution function:  
         F(w) =1-(k/w)θ                                                                    (36) 
With mean equal to, 
         E(w)= θk/(θ-1),  θ>1                                                                   (37) 
If we find the function y as stated by (31) as a function of x, the Lorenz function will be derived.  
Rearrange the terms of (31) as, 

         ∫ ∞−
=

v
dwwfvx )()(                                                                                                                (38) 
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         [ ]∫= ∞−
v dwwwfWEvxy )()(1))((                                                                                          (39) 

Substituting Pareto distribution function, 
         x(v) = F(v) = 1-(k/v)θ                                                                                                              (40)                                 

         y(x(v)) = [(θ-1)/θk] ∫
v

k
wθkθw-θ-1dw                                                (41) 

Or, 
         y(x(v)) = 1-(k/v)θ-1                                                                                  (42) 
By solving (40) for "v" and substituting in (42), the Lorenz curve for Pareto distribution is derived as, 
         y = 1-(1-x)(θ-1)/θ                                                                  (43) 
For log-normal distribution, we proceed as follows: 
As it was shown in the case of Pareto distribution, formula of Lorenz curve is easily obtained.  However, 
if we select the log-normal density function (35), the procedure may not be the same.  Because the 
integral of log-normal function has not been derived yet.  In the following pages, the L1 norm smoothing 
technique will be developed to estimate the parameters of given functional forms (32) and (33) by using 
the continuous probability density function. 
According to (30) and (31) independent and dependent variables of (32) and (33) may be written as, 

         ∫=
v

o
dwwfvx )()(                                            (44)                                

        [ ]∫= v dwwwfWEvxy 0 )()(1))((                                                                                             (45) 
Substitute (44) and (45) in (32) and including random error term u, we’ll have, 

        [ ] eAdwwfdwwwfwE uv v v dwwf ..)()()(1 0 0 0 1)(∫ ∫ ∫= −                                                               (46)  
Or,  
         eAxxy ux 1)( −=                                                                                                                     (47) 
Similarly for the model (35), 

[ ] { } eAv dwwfdwwwfwE uv v dwwfB
..0 )()()(1 0 0 1)(∫ ∫∫= −                                                          (48)                                          

Or,  
         eAxxy uxB 1)( −=                                                                                                                   (49) 
Taking natural logarithm of (47) and (49), gives, 
         ln y(x)=ln x + (x-1)ln A + u                                                                                                    (50) 
         ln y(x)=B.ln x + (x-1)ln A + u                                                                                                 (51) 
With respect to properties of Lorenz curve and probability density function of f(w) and equations (46) to 
(49), it can be seen that x belongs to the interval [0,1].  Thus the L1 norm objective function for 
minimizing (50) or (51) is given by, 
       dxuSMin

A
∫= 1
0:                                                                                                                      (52) 

Or,                    

       ∫ −−−=
1

0
ln)1(ln)(ln: dxAxxxySMin

A
                                                                         (53) 

Or, 
      [ ]∫ −−−−= 1

0 ln)1/(ln)(ln1: dxAxxyxSMin
A

                                                                  (54) 

By a similar technique used by (9), we can rewrite (54) as, 

    [ ]{ } [ ]{ }∫ ∫ −−−−−−−−−=
t

tA
dxAxxyxdxAxxxyxSMin

0

1
ln)1/(ln)(ln1ln)1/(ln)(ln1: (55) 

 Since, 0≤ x ≤ 1 we have, 
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Differentiate (56) partially with respect to "t" and "A": 
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From equation (57), we have, 
      221±=t                                                                                              (59) 
Since "t" should belong to the interval [0,1], we accept, 
     221−=t                                                                                                                                 (60) 
Substitute (60) in (58), and solve for "A", gives the L1 norm estimation for "A" equal to, 

    ⎥
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⎤
⎢
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=
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2

y
A                                                                                                          (61) 

Now, let us apply this procedure to another Lorenz curve functional form of (33) (redefined by (51)).  
Rewrite L1 norm objective function (52) for the model (51), 

    ∫ −−−=
1

0,
ln)1(ln)(ln: dxAxxBxySMin
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                                                                   (62)                                        

Or, 
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The objective function (63) is similar to (16).  Thus, by a similar procedure to those of (17) through (29) 
we can write "S" as, 
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Since  0≤x≤1,  (64) reduces to, 
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Differentiate "S" partially with respect to "A", "B", t1 and t2, 
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     [ ]{ } 0)ln()1()ln()(ln2 222
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∂ AttBty
t
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                                                                       (69) 

The above system of simultaneous equations can be solved for the unknowns: t1, t2, "A" and "B".  
Equation (66) is reduced to, 
     t1

2-t2
2-2(t1-t2)-1/2 = 0                                                                                                                      (70) 

Equation (67) can be written as, 
     t1(ln t1-1) - t2(ln t2-1) – 1/2 = 0                                                                                                       (71) 
Calculate t1 from (70) as, 

    )232(1 2
2
21 +−±= ttt                                                                                                               (72) 

Since 0≤  t1 ≤ 1 we accept 

     232(1 2
2
21 +−−= ttt                                                                                                               (73) 

Substitute t1 from (73) into (71), and rearrange the terms, gives;  

     0)232(23
)2322( 2
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=+−+−+
⎥⎦
⎤

⎢⎣
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                         (74) 

The root of equation (74) may be computed by a numerical algorithm.  However, it has been computed 
and rounded for five digits decimal point as, 
         t2 = 0.40442                                                                                                                                (75) 
Value of t1 is derived by substituting t2 into (73); 
         t1 = 0.07549                                                                                                                                (76) 
Values of "B" and "A" are computed from (68) and (69) using t2 and t1 given by (75) and (76).  Thus, 
                  (t2-1)lny(t1) - (t1-1)lny(t2) 
         B = −−−−−−−−−−−−−−−−−−                                                                                                     (77) 
                  (t2-1)ln(t1) - (t1-1)ln(t2) 
Or, 
         B = -0.84857 ln[y(0.07549)] + 1.31722 ln[y(0.40442)]                                                               (78) 
And, 
         A = [y(0.07549)]1.28986[y(0.40442)]-3.68126                                                                                   (79)  
Now, let us describe how equation (61) for the model (32) and equations (78) and (79) for the model (33) 
can be used to estimate the parameters of the Lorenz curve when the probability distribution function is 
known.  For the model (32) we should solve (44) for 221)( −=vx .  On the other hand, we should 
find value of "v" such that, 

221)()( 0 −=∫= v dwwwfvx                                                                                                         (80) 
By substituting this value of "v" into (45), value of )221( −y  is computed.  This value is used to 
compute the parameter "A" given by (61) for model (32). 
The procedure for the model (33) is also similar, with the difference that two values of "v" should be 
computed.  Once two different values of "v" are computed as follow, 
   07549.0)()( 0 =∫= v dwwwfvx                                                                                              (81) 

   40442.0)()( 0 =∫=
v dwwwfvx                                                                                              (82) 

Values of "v" are substituted in (45) to find y(0.07549) and y(0.40442).  These values of "y" are used to 
compute the parameters of the model (33) by substituting them into (78) and (79). 
The computation of related definite integrals of x(v) defined by (80), (81) and (82) can be done by 
appropriate numerical methods. 
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7. NUMERICAL EXAMPLE 
 
Suppose the sample mean and median of income distribution of the society are given.  For calculation of 
the parameters of Lorenz curve, the following notations have been coded for MathCAD 11. 
Assume that the sample mean of income distribution of the society is:  $60,000. 
Assume that the sample median of income distribution of the society is: $40,000. 

The standard deviation can be calculated as     σ 2 ln
Mean
Med

⎛⎜
⎝

⎞⎟
⎠

⋅:=
  

And μ = ln (Med)    such that     μ= 10.5966  ,  σ = .9005   
Calculation of Log-Normal density function parameters based on sample mean and median  

Log-Normal Probability Density Function      f w( )
1

w σ⋅ 2 π⋅⋅

⎛
⎜
⎝

⎞
⎟
⎠

exp
ln w( ) μ−( )2−

2 σ
2

⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅:=  

Selective range for Log-Normal plot:              w 10 5− Mean
200

, 2 Mean⋅..:=  

Figure 2: Log-Normal plot 

f w( )

w  
Precision Tolerance level         TOL :=0.00001  
TOL value might be changed for more accurate solutions, (less TOL = higher precision)     

For equation (45) we have         y v( )
1

Mean
⎛⎜
⎝

⎞⎟
⎠ 0

v
ww f w( )⋅

⌠
⎮
⌡

d⋅:=  

For equation (44) we have          x v( )
0.00001

v
wf w( )

⌠
⎮
⌡

d:=  

Calculation for Gupta model: 
Initial guess for v:  v 20000:=   It might be changed for faster convergence and less iterations 

For (60)                                     t0 1
2

2
−:=  

Calculating v for (80)                   v root x v( ) t0− v,( ):= ,              v 27136.6437=  

y(t )                                                y v( ) 0.04208=                    z0 y v( ):=  

For (61)     estimated A:                 A
t0
z0

⎛⎜
⎜⎝

⎞⎟
⎟⎠

2

:=

      
A 15.54768=  

For   (53)                                        S

0

1
xln z0( ) ln t0( )− t0 1−( ) ln A( )⋅−

⌠
⎮
⌡

d:=    

Sum of absolute residuals               S 0=    
Range variable for plotting the Lorenz curves             X 0 0.005, 1..:=  
Gupta Lorenz curve:                         Y X( ) X AX 1−

⋅:=  
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Calculation of Gini coefficient          Gini 1 2
0

1
XY X( )

⌠
⎮
⌡

d⋅−:=

         
Gini 0.51967=  

 
Calculation For Bidabad Model:  
For (76)        t1 0.07549:=

 
Initial guess for v:   v 8000:=     It might be changed for faster convergence and less iterations  
Calculating v for (81)                    v root x v( ) t1− v,( ):=

 
              v 9464.04318=  

y(0.07549)                                     y v( ) 0.00442=                     z1 y v( ):=   

For (75)                                          t 2 0.40442:=
 

Initial guess for v:   v 27000:=       It might be changed for faster convergence and less iterations 
Calculating v for (82)                    v root x v( ) t2− v,( ):=

 
           v 38826.25803=

 
y(0.40442)                                     y v( ) 0.07722=                     z2 y v( ):=

 

For (79)                                          
A z1( )1.28986 z2( ) 3.68126−

⋅:=
 

For (78)                                          
B 0.84857− ln z1( )⋅ 1.31722 ln z2( )⋅+:=

 
Estimated A and B:                        A 11.41481=                       B 1.22709=  

For (62)                                          S

0

1
xln z1( ) B ln t1( )⋅− t1 1−( ) ln A( )⋅−

⌠
⎮
⌡

d:=

 
Sum of absolute residuals              S 0.00002=  
Range variable for plotting the Lorenz curves               X 0 0.005, 1..:=  
Modified Lorenz curve                   Y X( ) XB AX 1−

⋅:=  

Calculation of Gini coefficient      Gini 1 2
0

1
XY X( )

⌠
⎮
⌡

d⋅−:=

          
Gini 0.51834=  

  
 

8.IMPLIED-INEQUALITY-INDEX   
 
Most inequality indices concentrate on statistical aspect of the distribution of income.  That is they 
generally analyze the distribution without inferring about the amount of fund needed to correct income 
inequality.  In this section, we will introduce an inequality index, which shows how much money should 
be transferred from upper income group to the lower group to achieve the desired distribution of income.   
Suppose there is a personal income υ at which half of the total income of the population belongs to those 
who have less than υ and the other half of the income belongs to those who have higher income than υ.  
That is: 

     ∫∫
+∞

∞−
=

v

v
dwwwfdwwwf )()(                                                                                               (83)          

By definition, we have: 

      ∫∫∫
+∞

∞−

+∞

∞−
+==

v

v
wwfdwwwfdwwwf )()()(μ                                                                          (84) 

That is: 

      2)( μ=∫ ∞−

v
dwwwf                                                                                (85) 

On the other hand: 
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     21
)(

)(
=

∫
∫

∞+

∞−

∞−

dwwwf

dwwwf
v

                                                                                                                    (86) 

According to (31) this is a point on Lorenz curve with the following ordered pair: 

     )21,)((∫ ∞−

v
dwwwf                                                                                                                     (87) 

Thus, we define implied-inequality-index (iii) as ∫ ∞−
v dwwf )(  when υ satisfies (83).  That is, 

     ∫= ∞−
v dwwfiii )(     when v satisfies 21

)(

)(
=

∫
∫

∞+

∞−

∞−

dwwwf

dwwwf
v

                                                        (88) 

To find iii, (85) should be solved for υ and its value be replaced in (88).  As iii approaches ½, distribution 
becomes more symmetric.  If iii tends to 1, distribution tends to be fully right-skewed indicating high 
(right) inequality and as iii tends to 0, distribution tends to be left-skewed and distribution tends to left 
high inequality.  The values of iii less than ½ however have no economic implication for income 
distribution. Let us define the cost of equalization as:  
         C= [iii-½]×N×μ                                                                                                                       (89) 
The above expression means that to equalize the distribution of income without changing the average 
income of the society, the amount of C should be transferred from higher income earner to lower income 
earner, where N and μ are the population size and average income of the society. 
We may normalize this index by dividing the equalization cost by total income of the society and find an 
inter-societies comparable index.  That is: 
Relative cost of equalization = [(iii-½)×N×μ ] / ( N×μ) = (iii-½)                                                   (90) 

 
9.NUMERICAL EXAMPLE 
 
To illustrate, the following table 1 of income distribution for a hypothetical society is used.  Consider a 
society of 400 households with total income of the society equal to $2000 where 280 poor income earners 
receive half of it ($1000) and 120 richer earn another 50% ($1000) of the society’s income.  These values 
can be simply understood from table 1.  At the half of total income of the society ($1000) the bottom 70% 
of the population earns 50% of society’s income and 30% of the top of the population earn other 50% of 
the total income of the society.  According to table 1, we have: 
         N = 400   (Number of households) 

    υ =  μ = 2000/400=5                   (Average income) 
    μ lower   = 1000/280 = 3.57           (Average income of lower category) 
    μ upper   = 1000/120 = 8.33,           (Average income of upper category)  
    iii = 280/400 = 0.7                          (implied inequality index) 
    C = (0.7-0.5) × 400×5= $400         (Cost of equalization)  

That is, if we collect total tax of $400 from the top 30% of the population and transfers it to the lower 
70% of the income earners, the average income of both groups will be the same: 
        (1000+400)/280 = (1000-400)/ 120 = 5 

   Relative cost of equalization = 0.7-0.5 = 0.2  
That is the cost of such equalization is 20% of the total income of the society.   
 
 
 
 
 
 



13 

Table 1: Income distribution for a hypothetical society 

In table 1, the column (1) depicts dollar values of income categories and the column (2) shows the number or frequencies of households in each 
income category of column (1).  Columns (3), (4) and (5) are for cumulative frequencies, relative frequencies, and relative cumulative 
frequencies.  Column (6) shows the number of lower and higher income earners.  Column (7) shows the multiplication of the paired elements of 
the columns (1) and (2).  Column (8) cumulates (7) and (9) shows the relative cumulative income.  The column (10) shows the half of the total 
income of the society. 
 
According to the table 1, we may depict the iii and the relative cost of equalization on the Lorenz curve as 
follows.  This is depicted by using columns (4) and (9) of the above table. 

 
Figure 3: Implied inequality index iii 

 
This figure depicts the information of table 1. The implied inequality index (iii) and 

relative cost of equalization are shown as corresponding parts of Lorenz curve 

Income 
w 

Frequency 
f 

Cumulative 
Frequency 

F 

Relative 
Frequency 

Relative 
Cumulative 
Frequency  

Half Income 
Earner 

w . f 
 

 (1)*(2) 

Cumulative 
Income 

Relative 
Cumulative 

Income 

Half 
Income

($) (Numbers) (Numbers) (%) (%) (Numbers) ($) ($) ($) ($) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

1 17 17 4.3% 4.3% 

280 

17 17 0.9%  
 
 
 

1000 

2 20 37 5.0% 9.3% 40 57 2.9% 
3 95 132 23.8% 33.0% 285 342 17.1% 
4 82 214 20.5% 53.5% 328 670 33.5% 
5 66 280 16.5% 70.0% 330 1000 50.0% 
6 30 310 7.5% 77.5% 

120 

180 1180 59.0%  
 
 
 
 
 
 
 

1000 

7 21 331 5.3% 82.8% 147 1327 66.4% 
8 18 349 4.5% 87.3% 144 1471 73.6% 
9 17 366 4.3% 91.5% 153 1624 81.2% 
10 14 380 3.5% 95.0% 140 1764 88.2% 
11 11 391 2.8% 97.8% 121 1885 94.3% 
12 4 395 1.0% 98.8% 48 1933 96.7% 
13 3 398 0.8% 99.5% 39 1972 98.6% 
14 2 400 0.5% 100.0% 28 2000 100.0% 

 400  100%  400 2000   2000 



14 

 
CONCLUSION 

 
Estimation of the Lorenz curve is confronted with some difficulties.  To avoid this, we try to estimate the 
functional form of the Lorenz curve by using continuous information.  We used the probability density 
function of population income to estimate the Lorenz function parameters by the continuous L1 norm 
smoothing method.  To have a better understanding and policy arrangements about the inequality of 
income distribution, it is not enough to know the conventional inequality indices.  The redistribution 
policies need to deal with specific budget guidelines to promote the society to a more equal position.  
Obviously, there is no single "best" measure of income inequality.  While there are alternative methods, 
there is no best way to calculate the inequality index specially concentrating on fiscal view.  That is they 
generally analyze the distribution without inferring about the amount of fund needed to correct income 
inequality.  The viewpoint of this paper is to introduce an implied inequality index, which satisfies these 
policy implications needs.  We designed an implied inequality index as a fiscal guidepost for equalization 
of society's income.   
We did not develop the model to other policy objects.  That is, instead of benchmarking of half income of 
the society we may adopt quantiles or deciles points as equalization policy object.  These developments 
will improve the policy applications of the derived indices. 
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