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Abstract 
     In this paper, the L1 norm of continuous functions and corresponding continuous 
estimation of regression parameters are defined. The continuous L1 norm estimation problems 
of linear one and two parameters models are solved. We proceed to use the functional form 
and parameters of probability distribution function of income to exactly determine the L1 
norm approximation of the corresponding Lorenz curve of the statistical population under 
consideration. U.S. economic data used to estimate income distribution for the period of 
1977-2002. An interesting finding of these calculations is that the distribution of income 
obeys a counter wise business cycles fluctuations. This finding is a new area for research in 
realm of the theory and application of income distribution and business cycles 
interrelationship. 
 
1. Introduction 
     The skewness of income distribution is persistently exhibited for different populations and 
in different times. It is discussed that Pearsonian family distributions are rival functions to 
explain income distribution. Lorenz curve is a method to analyze the skew distributions. 
There is a relation between the area under the Lorenz curve and the corresponding probability 
distribution function of the statistical population (see, Kendall and Stuart (1977)). That is, 
when the probability distribution function is known, we may find the corresponding Gini 
coefficient as the measure of inequality. 
     Estimation of the Lorenz curve is confronted with some difficulties. For this estimation, 
we should define an appropriate functional form which can accept different curvatures (see, 
Bidabad and Bidabad (1989a,b)). There is another problem, that is, to create the necessary 
data set for estimating the corresponding parameters of the Lorenz curve, a large amount of 
computation on raw sample income data is inevitable. Obviously, these problems despite of 
their computational difficulties, make the significance of the estimated parameters poor (see, 
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Bidabad and Bidabad (1989a,b)). To avoid this, we try to estimate the functional form of the 
Lorenz curve by using continuous information. In this paper we use the probability density 
function of population income to estimate the Lorenz function parameters. The continuous L1 
norm smoothing method which will be developed for estimating the regression parameters is 
used to solve this problem. However, we concentrate on two rival probability density 
functions of Pareto and log-normal. Since, the former is simply integrable, there is no general 
problem to derive the corresponding Lorenz function and the function is uniquely derived. 
But in the latter case, the log-normal density function (which has better performance for full 
income range) than Pareto distribution (which better fits to higher income range, (see, Cramer 
(1973), Singh and Maddala (1976), Salem and Mount (1974)), is not integrable and we can 
not determine its corresponding Lorenz function. In this regard we should solve the problem 
by defining a general Lorenz curve functional form and applying the L1 norm smoothing to 
estimate the corresponding parameters. 
     In this paper continuous L1 norm estimation is developed by using a similar method 
proposed in Bidabad (1987a,88a,89a,b) for discrete case. Then the method is applied to 
estimation of the Lorenz curve functional forms which have been proposed by Gupta (1984) 
and Bidabad and Bidabad (1989,92). At the end, we use our formulation to estimate Gini 
ratio and Kakwani length indices of inequality for the United States for the period of 1971-
1990, based on the assumption that income is distributed log-normally. 
 
2. L1 norm of continuous functions 
     Generally, Lp norm of a function f(x) (see, Rice and White (1964)) is defined by, 
         ||f(x)||p = ∫xεI |f(x)|pdx)1/p                      (1) 
Where, "I" is a closed bounded set.  The L1 norm of f(x) is simply written as, 
         ||f(x)||1 =  ∫xεI |(x)|dx                                 (2) 
Suppose that the non-stochastic function f(x,β) of "x", is combined with stochastic 
disturbance term "u" to form y(x) as follows, 
     y(x) = f(x, β) + u                                                                                   (3) 
Where, β is unknown parameters vector.  Rewriting u as the residual of y(x)-f(x,β), for L1 
norm approximation of "β" we should find "β" vector such that the L1 norm of "u" is 
minimum.  That is, 
     Min: S=||u||1=||y(x)-f(x,β)||1=∫xεI |y(x)-f(x,β)|dx                               (4) 
      β 
 
3. Linear one parameter L1 norm continuous smoothing 
     Redefine f(x,β) as βx and y(x) as the following linear function, 
     y(x) = βx + u                                                                  (5) 
Where, "β" is a single (non-vector) parameter.  Expression (4) reduces to: 
     min: S = ||u||1 = ||y(x)- βx||1 = ∫xεI |y(x)-f(x,β)|dx                                                                 (6) 
       β 
The discrete analogue of (6) is solved by Bidabad (1987a,88a,89a,b).  In these papers we 
proposed applying discrete and regular derivatives to the discrete problem by using a slack 
variable "t" as a point to distinguish negative and positive residuals. A similar approach is 
used here to minimize (6).  To do so in this case certain Lipschitz conditions are imposed on 
the functions involved (see, Usow (1967a)).  Rewrite (6) as follows, 
     Min: S = ∫xεI |x||y(x)/x – β|dx                                                                                               (7) 
      β 
For convenience, define "I" as a closed interval [0,1]. The procedure may be applied to other 
intervals with no major problem (see, Usow (1967a), Hobby and Rice (1965), Kripke and 
Rivlin (1965)).  To minimize this function we should first remove the absolute value sign of 
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the expression after the integral sign. Since "x" belongs to closed interval "I", y(x) (which is a 
linear function of "x") and also y(x)/x are smooth and continuous. Thus, since y(x)/x is 
uniformly increasing or decreasing function of "x", a value of tnI can be found to have the 
following properties, 
     y(x)/x < β       if x < t 
     y(x)/x = β       if x = t                                                  (8) 
     y(x)/x > β       if x > t 
Value of the slack variable "t" actually is the border of negative and positive residuals. If 
value of "t" were known, from (8) (middle equation) we could calculate optimal value of "β" 
or inversely.  But nor "t" neither "β" are known.  To solve this problem, according to (8), we 
can rewrite (7) as two separate definite integrals with different upper and lower bounds. 
                      ⌠t                                ⌠1  
     min: S = - ⌡0 |x| (y(x)/x - β)dx +⌡t |x| (y(x)/x - β)dx                   (9) 
      β 
Decomposition of (7) into (8) has been done by use of the slack variable "t". Since both "β" 
and "t" are unknown, to solve (9), we partially differentiate it with respect to "t" and "β"  
variables. 
       δS       ⌠t             ⌠1 
     ───  = ⌡0 |x|dx - ⌡t |x|dx = 0                               (10) 
       δβ 
and using Liebniz' rule to differentiate the integrals with respect to their variable bounds "t", 
yields, 
      δS                y(t)                 y(t) 
     ───  = -|t| [─── - β] - |t| [─── - β] = 0                               (11) 
       δt                  t                      t 
Since "x" belongs to [0,1], equation (10) can be written as, 
     ⌠t           ⌠1 
     ⌡0 xdx - ⌡t xdx = 0                                 (12) 
or, 
     ½ t2 - ½ + ½t2 = 0                                                            (13) 
Which yields, 
     t = √2/2                                                          (14) 
Substitute for "t" in equation (11), yields, 
             y(√2/2) 
     β = ─────                                                                            (15) 
               √2/2 
Remember that y(t) is function y(x) evaluated at x=t.  Value of "β" given by (15) is the 
optimal solution of (6). The above procedure actually is generalization of Laplace weighted 
median for continuous case. 
     Before applying this procedure to Lorenz curve, let us develop the procedure for the two 
parameters linear model. 
 
4. Linear two parameters L1 norm continuous smoothing 
     Now, we try to apply the above technique to the linear two parameters model. Rewrite (4) 
as, 
     Min: S=||u||1=||y(x)-α-βx||1=∫xεI |y(x)-α-βx|dx                            (16) 
     α,β 
Where, "α" and "β" are two single (non-vector) unknown parameters and y(x) and "x" are as 
before. According to Rice (1964c), let f(α*,β*,x) interpolates y(x) at the set of canonical 
points {xi;i=1,2}, if y(x) is such that y(x)-f(α*,β*,x) changes sign at these xi's and at no other 
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points in [0,1], then f(α*,β*,x) is the best L1 norm approximation to y(x) (see also, Usow  
(1967a)). With the help of this rule, if we denote these two points to t1 and t2 we can rewrite 
(16) for I=[0,1] as,  
           ⌠t1                           ⌠t2                           ⌠1 
     S = ⌡0  [y(x)-α-βx]dx - ⌡t1 [y(x)-α-βx]dx + ⌡t2 [y(x)-α-βx]dx                        (17) 
Since t1 and t2 are also unknowns, we should minimize S with respect to α, β, t1 and t2. 
Taking partial derivative of (17) using Liebniz' rule with respect to these variables and 
equating them to zero, we will have, 
       δS         ⌠t1        ⌠t2         ⌠t1 
     ─── = - ⌡0 dx + ⌡t1 dx - ⌡t2 dx = 0                                     (18) 
       δα 
       δS         ⌠t1        ⌠t2         ⌠t1 
     ─── = - ⌡0 dx + ⌡t1 dx - ⌡t2 dx = 0                            (19) 
       δβ 
      δS 
     ─── = 2[y(t1) -α-βt1] = 0                                                    (20) 
      δt1 
      δS 
      ─── = - 2[y(t2) -α - βt2] = 0                                                (21) 
      δt2 
Equations (18) through (21) may be solved simultaneously for α, β, t1 and t2. Thus, we have 
the following system of equations, 
     2t2 - 2t1 - 1 = 0                                                             (22) 
     t2

2 - t1
2 - ½ = 0                                                                                                                   (23) 

     y(t1) - α - βt1 = 0                                                                                                                (24) 
     y(t2) - α - βt2 = 0                                                                                                                (25) 
The solutions are, 
     t1=1/4                                                                 (26) 
     t2=3/4                                                                          (27) 
     α = y(3/4)-(3/4)β = y(1/4)-(1/4)β                                            (28) 
     β = 2[y(3/4)-y(1/4)]                                                       (29) 
     This procedure, similar to that of multiple regression model for discrete case may be 
expanded to include "m" unknown parameters which is not discussed here.  Some 
computational methods for solving the different cases of m parameters model are investigated 
by Ptak (1958), Rice and White (1964), Rice (1964a,b,c,69,85), Usow (1967a), Lazarski 
(1975a,b,c,77) (see also, Hobby and Rice (1965), Kripke and Rivlin (1965), Watson (1981)). 
Now, let us have a look at Lorenz curve and its proposed functional forms. 
 
5. Lorenz curve 
     The Lorenz curve for a random variable with probability density function f(v) may be 
defined as the ordered pair2,  
                        E(V|V≤v) 
     (P(V|V≤v), ──────)         vεR                                         (30) 
                           E(V) 
Where "P" and "E" stand for probability and expected value operators. For a continuous 
density function f(v), (30) can be written as, 
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                           ⌠v 
      ⌠v                 ⌡-∞ wf(w)dw 
     (⌡-∞ f(w)dw, ────────) ≡ (x(v),y(x(v)))                              (31) 
                           ⌠+∞l 
                           ⌡-∞wf(w)dw 
We denote (31) by (x(v),y(x(v))) where x(v) and y(x(v)) are its elements. Therefore, "x" is a 
function which maps "v" to x(v) and "y" is a function which maps x(v) to y(x(v)).  The 
function y(x(v)) is simply the Lorenz curve function. In recent years some functional forms 
for Lorenz curve have been introduced.  Among different proposed functions we use the 
forms of Gupta (1984) and Bidabad and Bidabad (1989,92) which benefits from certain 
properties (see their articles for more explanations). Gupta (1984) proposed the functional 
form, 
     y=xAx-1      A>1                                                              (32) 
Bidabad and Bidabad (1989,92) suggest the following functional form: 
     y=xBAx-1       B≥1, A≥1                                                      (33) 
     To estimate the above functions by regular estimating method, we should gather discrete 
data from the statistical population, and manipulate them to construct relevant x and y vectors 
to estimate "A" of (32) or "A" and "B" of (33).  If the probability distribution of income is 
known, instead of gathering discrete observations, we can estimate the Lorenz curve by using 
the continuous L1 norm smoothing method for continuous functions.  In the following section 
we proceed to apply this method to estimate the parameters "A" of (32) and "A" and "B" of 
(33) by using the information of probability density function of income. 
 
6. Continuous L1 norm smoothing of Lorenz curve 
     To estimate the Lorenz curve parameters when income probability density function is 
known, we can not always take straightforward steps. When the probability density function 
is easily integrable, there is no major problem in advance. We can find the functional 
relationship between the two elements of (31) by simple mathematical derivation. But, when 
integrals of (31) are not obtainable, another procedure should be adopted. 
     Suppose that income of a society is distributed with probability density function f(w). This 
density function may be a skewed function such as Pareto or log-normal, as follows 
     f(w)=θkθw-θ-1,       wrk>0, θ>0                                              (34) 
     f(w)=[1/wσ√(2π)]exp{-[ln(w)-µ]2/2σ2},   wε(0,∞), µε(-∞,+∞), σ>0                         (35) 
These two distributions have been known as good candidates for presenting distribution of 
personal income. 
     In the case of Pareto density function of (34), we can simply derive the Lorenz curve 
function as follows. Let F(w) denote the Pareto distribution function: 
     F(w)=1-(k/w)θ                                                                  (36) 
with mean equal to, 
     E(w)= θk/(θ-1),  θ>1                                                                 (37) 
If we find the function y as stated by (31) as a function of x, the Lorenz function will be 
derived. Now, proceed as follows. Rearrange the terms of (31) as, 
                ⌠v 
     x(v) = ⌡-∞ f(w)dw                                                        (38) 
                                 ⌠ tv 
     y(x(v)) = [1/E(x)]⌡-∞  wf(w)dw                                             (39) 
Substitute Pareto distribution function, 
     x(v) = F(v) = 1-(k/v)θ                                                              (40) 
                                   ⌠v 
     y(x(v)) = [(θ-1)/θk]⌡k wθkθw-θ-1dw                                             (41) 
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or, 
     y(x(v)) = 1-(k/v)θ-1                                                             (42) 
Now, by solving (40) for "v" and substituting in (42), the Lorenz curve for Pareto distribution 
is derived as, 
     y = 1-(1-x)(θ-1)/θ                                                                (43) 
     As it was shown in the case of Pareto distribution, formula of Lorenz curve is easily 
obtained. But, if we select the log-normal density function (35), the procedure may not be the 
same. Because the integral of log-normal function has not been derived yet. In the following 
pages, the L1 norm smoothing technique will be developed to estimate the parameters of 
given functional forms (32) and (33) by using the continuous probability density function. 
     According to (30) and (31) independent and dependent variables of (32) and (33) may be 
written as, 
                ⌠v 
     x(v) = ⌡0 f(w)dw                                                       (44) 
                                  ⌠v 
     y(x(v)) = [1/E(x)] ⌡0 wf(w)dw                                             (45) 
Substitute (44) and (45) inside (32) and define random error term u as, 
                                                                ⌠v 
                   ⌠v                    ⌠v                ⌡0 f(w)dw-1     
     [1/E(w)]⌡0 wf(w)dw = ⌡0 f(w)dw.A                     . eu                                                     (46) 
or briefly, 
     y(x)=xAx-1eu                                                                                                                      (47) 
Similarly for the model (35), 
                                                                    ⌠v 
                   ⌠v                    ⌠v              B    ⌡0 f(w)dw-1   
     [1/E(w)]⌡0 wf(w)dw={⌡0 f(w)dw}  . A                    . eu                                                 (48) 
or briefly, 
     y(x)=xBAx-1eu                                                                                                                    (49) 
Taking natural logarithm of (47) and (49), gives, 
     ln y(x)=ln x + (x-1)ln A + u                                                                                              (50) 
     ln y(x)=B.ln x + (x-1)ln A + u                                                                                          (51) 
With respect to properties of Lorenz curve and probability density function of f(w) and 
equations (46) to (49), it is obvious that x belongs to the interval [0,1]. Thus the L1 norm 
objective function for minimizing (50) or (51) is given by, 
                    ⌠1 
     min: S = ⌡0 |u|dx                                                                                                              (52) 
Now, let us deal with L1 norm estimation of "A" of Lorenz curve functional form (32) 
(redefined by (50)). The corresponding L1 norm objective function will be, 
                    ⌠1 
     min: S = ⌡0 |ln y(x) - ln x - (x-1) ln A|dx                                                                         (53) 
      A 
or, 
                    ⌠1 
     min: S = ⌡0 |x-1||[ln y(x)-ln x]/(x-1) - ln A|dx                                                                 (54) 
      A 
By a similar technique used by (9), we can rewrite (54) as,  
                    ⌠t                                                          ⌠1 
     min: S = ⌡0 |x-1|{[ln y(x)-ln x]/(x-1)-ln A}dx - ⌡t |x-1|{[ln y(x)-ln x]/(x-1)-ln A}dx    (55) 
      A 
since, 0≤x≤1 we have, 
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                      ⌠t                                                   ⌠1 
     min: S = - ⌡0 [ln y(x) - ln x - (x-1) ln A]dx +⌡t [ln y(x) - ln x - (x-1) ln A]dx                (56) 
      A 
Differentiate (56) partially with respect to "t" and "A" and equate them to zero; 
      δS            ⌠t               ⌠1 
     −−−− = + ⌡0 [(x-1)/A]dx - ut [(x-1)/A]dx = 0                                              (57) 
      δA 
      δS 
     −−−− = - 2[ln y(t) - ln t - (t-1)ln A] = 0                                                                            (58) 
      δt 
From equation (57), we have, 
     t = 1±√2/2                                                                                                 (59) 
Since "t" should belong to the interval [0,1], we accept, 
     t = 1-√2/2                                                                                                                          (60) 
Substitute (60) in (58), and solve for "A", gives the L1 norm estimation for "A" equal to, 
               1-√2/2          
     A = [−−−−−−−−]√2                                                                                                            (61) 
               y(1-√2/2)  
Now, let us apply this procedure to another Lorenz curve functional form of (33) (redefined 
by (51)).  Rewrite L1 norm objective function (52) for the model (51), 
                    ⌠1 
     min: S = ⌡0 |ln y(x) - B ln x - (x-1) ln A|dx                                                                     (62) 
     A,B 
or, 
                  ⌠1 
     min: S=⌡0 |x-1||[lny(x)]/(x-1)-(lnx)/(x-1)-lnA|dx                                                            (63) 
     A,B 
The objective function (63) - by some changing on variables - is similar to (16). Thus, by a 
similar procedure to those of (17) through (29) we can write "S" as, 
                   ⌠t1 
     min: S = ⌡0 |x-1|{[lny(x)]/(x-1)-(lnx)/(x-1)-lnA}dx 
     A,B 
              ⌠t2 
            - ⌡t1|x-1|{[lny(x)]/(x-1)-(lnx)/(x-1)-lnA}dx 
 
               ⌠1 
            + ⌡t1|x-1|{[lny(x)]/(x-1)-(lnx)/(x-1)-lnA}dx                                                             (64) 
Since  0≤x≤1, then (64) reduces to, 
                      ⌠t1                                                       ⌠t2   
     min: S = - ⌡0  [ln y(x) - B ln x - (x-1) ln A]dx + ⌡t1 [ln y(x) - B ln x - (x-1) ln A]dx 
     A,B 
                ⌠1 
              - ⌡t2 [ln y(x) - B ln x - (x-1) ln A]dx                                                                       (65) 
Differentiate "S" partially with respect to "A", "B", t1 and t2 and equate them to zero, 
      δS      1    ⌠t1               ⌠t2                  ⌠1         
     −−− = −  [ ⌡0 (x-1)dx -⌡t1 (x-1)dx +  ⌡t2 (x-1)dx  ]  = 0                                                 (66) 
      δA     A           
      δS        ⌠t1                 ⌠t2                  ⌠1 
     −−−− = ⌡0  ln(x)dx - ⌡t1 ln(x)dx +  ⌡t2  ln(x)dx = 0                                                        (67) 
      δB               
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      δS 
     −−−− = -2{ln[y(t1)] - Bln(t1) - (t1-1)ln(A)} = 0                                                                (68) 
      δt1 
 
      δS 
     −−−− = 2{ln[y(t2)] - Bln(t2) - (t2-1)ln(A)} = 0                                                                 (69) 
      δt2 
The above system of simultaneous equations can be solved for the unknowns t1, t2, "A" and 
"B".  Equation (66) is reduced to, 
     t1

2-t2
2-2(t1-t2)-1/2 = 0                                                                                                        (70) 

Equation (67) can be written as, 
     t1(ln t1-1) - t2(ln t2-1) – 1/2 = 0                                                                                          (71) 
Calculate t1 from (70) as, 
     t1 = 1 ±√q (t2

2-2t2+3/2)                                                                                                      (72) 
Since 0st1s1, we accept, 
     t1 = 1 - √(t2

2-2t2+3/2)                                                                                                        (73) 
Substitute t1 from (73) into (71), and rearrange the terms, gives; 
                           [1-√(t2

2-2t2+3/2)] 
         [1-√(t2

2-2t2+3/2)] 
     ln −−−−−−−−−−−−−−−−−−−−− + t2-3/2+√(t2

2-2t2+3/2) = 0                                           (74) 
                        t2

t2 
The root of equation (74) may be computed by a suitable numerical algorithm. However, it 
has been computed and rounded for five digits decimal point as, 
     t2 = 0.40442                                                                                                                       (75) 
Value of t1 is derived by substituting t2 into (73); 
     t1 = 0.07549                                                                                                                       (76) 
Values of "B" and "A" are computed from (68) and (69) using t2 and t1 given by (75) and 
(76). Thus, 
          (t2-1)lny(t1) - (t1-1)lny(t2) 
     B = −−−−−−−−−−−−−−−−−−                                                                                           (77) 
          (t2-1)ln(t1) - (t1-1)ln(t2) 
or, 
     B = -0.84857ln[y(0.07549)] + 1.31722ln[y(0.40442)]                                                     (78) 
and, 
     A = [y(0.07549)]1.28986[y(0.40442)]-3.68126                                                                        (79) 
Now, let us describe how equation (61) for the model (32) and equations (78) and (79) for the 
model (33) can be used to estimate the parameters of the Lorenz curve when the probability 
distribution function is known.  In the model (32) we should solve (44) for x(v)=1-√2/2.  On 
the other hand, we should find value of "v" such that, 
                ⌠v 
     x(v) = ⌡0 f(w)dw = 1-√2/2                                                                                               (80) 
By substituting this value of "v" into (45), value of y(1-√2/2) is computed. The value y(1-
√2/2) is used to compute the parameter "A" given by (61) for model (32). 
     The procedure for the model (33) is also similar, with the difference that two values of "v" 
should be computed.  Once two different values of "v" are computed as follow, 
                ⌠v 
     x(v) = ⌡0 f(w)dw = 0.07549                                                                                             (81) 
                ⌠v 
     x(v) = ⌡0 f(w)dw = 0.40442                                                                                             (82) 
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Values of "v" are substituted in (45) to find y(0.07549) and y(0.40442). These values of "y" 
are used to compute the parameters of the model (33) by substituting them into (78) and (79). 
     The only problem remains is computation of related definite integrals of x(v) defined by 
(80), (81) and (82) which can be done by appropriate numerical methods such as the enclosed 
sample computer program coded for MathCAD 11 for a complete example. 
 
7. Income distribution in the Unites States of America 
     In order to compute the Lorenz curve for the United States we try to apply the above 
procedure for both (32) and (33) propositions and using log-normal distribution function 
assumption.  The source of data is "the U.S. economic report of president to parliament, 
different years". Median income and disposable personal income per family report by table 1. 
The amount of mean and median of income were used to derive the log-normal density 
function parameters µ and δ. The explained procedure of estimation then applied to the series 
of data for 1977-2002, and corresponding results are reported in next table 2. The results of 
Slottje (1989) which are based on quintile data calculations confirm our finding figures 
partially. Comparisons show the high compatibility of both procedures. An interesting 
finding of these calculations is that the distribution of income obeys a counter wise business 
cycles fluctuations. This finding is a new area for research in realm of the theory and 
application of income distribution and business cycles interrelationship.  
     A sample computer program is also enclosed at the end of these pages. 
Table 1. 

Year Population 
millions 

No. of 
families 
millions

Disposable 
personal income,  
billions of current 

$ 

Per capita 
disposabl
e income 

$ 

Per family 
disposabl
e income 

$ 

Family 
median 
Income 

current $ 

Gross 
domestic 
product 

billions of $ 

Real gross 
domestic product 

billions of 
chained (2000) $

1977  220.3 57.2 1435.7 6,517 25,098 16009.0 2,030.9 4,750.5
1978  222.6 57.8 1608.3 7,224 27,825 17639.9 2,294.7 5,015.0
1979  225.1 59.6 1793.5 7,967 30,091 19587.2 2,563.3 5,173.4
1980  227.7 60.3 2009.0 8,822 33,317 21023.2 2,789.5 5,161.7
1981  230.0 61.0 2246.1 9,765 36,820 22387.8 3,128.4 5,291.7
1982  232.2 61.4 2421.2 10,426 39,432 23433.3 3,255.0 5,189.3
1983  234.3 62.0 2608.4 11,131 42,070 24673.9 3,536.7 5,423.8
1984  236.4 62.7 2912.0 12,319 46,446 26433.1 3,933.2 5,813.6
1985  238.5 63.6 3109.3 13,037 48,890 27735.2 4,220.3 6,053.7
1986  240.7 64.5 3285.1 13,649 50,932 29458.2 4,462.8 6,263.6
1987  242.8 65.2 3458.3 14,241 53,042 30970.2 4,739.5 6,475.1
1988  245.1 65.8 3748.7 15,297 56,971 32191.0 5,103.8 6,742.7
1989  247.4 66.1 4021.7 16,257 60,844 34213.1 5,484.4 6,981.4
1990  250.2 66.3 4285.8 17,131 64,643 35353.3 5,803.1 7,112.5
1991  253.5 67.2 4464.3 17,609 66,435 35938.7 5,995.9 7,100.5
1992  256.9 68.2 4751.4 18,494 69,670 36573.1 6,337.7 7,336.6
1993  260.3 68.5 4911.9 18,872 71,709 36929.5 6,657.4 7,532.7
1994  263.5 69.3 5151.8 19,555 74,341 38781.9 7,072.2 7,835.5
1995  266.6 69.6 5408.2 20,287 77,705 40610.6 7,397.7 8,031.7
1996  269.7 70.2 5688.5 21,091 81,033 42300.2 7,816.9 8,328.9
1997  273.0 70.9 5988.8 21,940 84,467 44568.2 8,304.3 8,703.5
1998  276.2 71.6 6395.9 23,161 89,330 46736.8 8,747.0 9,066.9
1999  279.3 73.2 6695.0 23,968 91,461 48789.3 9,268.4 9,470.3
2000   282.5 73.8 7194.0 25,467 97,478 50731.7 9,817.0 9,817.0
2001   285.6 74.3 7469.4 26,156 100,531 51407.4 10,100.8 9,866.6
2002   288.6 75.6 7857.2 27,223 103,932 51680.0 10,480.8 10,083.0
2003 290.5  8039.2 27,675 10,735.8 10,210.4

http://www.gpoaccess.gov/eop/ 
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Table 2. 
Year Gupta Model Bidabad model Slottje figures 

 A Gini Kakwani A B Gini Kakwani Gini Kakwani 
1977 7.938 0.442 0.172 5.798 1.214 0.438 0.170 0.426 0.109
1978 8.080 0.444 0.173 5.899 1.214 0.441 0.172 0.427 0.108
1979 7.484 0.434 0.166 5.475 1.212 0.430 0.164 0.427 0.111
1980 8.189 0.446 0.175 5.978 1.215 0.442 0.173 0.428 0.112
1981 9.095 0.456 0.185 6.631 1.218 0.546 0.183 0.435 0.114
1982 9.693 0.467 0.191 7.064 1.220 0.464 0.190 0.447 0.118
1983 10.051 0.471 0.194 7.324 1.221 0.469 0.193 0.447 0.120
1984 10.909 0.481 0.202 7.952 1.222 0.479 0.201 0.449 0.121
1985 11.004 0.482 0.203 8.021 1.223 0.480 0.202  
1986 10.442 0.476 0.198 7.609 1.222 0.473 0.197  
1987 10.175 0.473 0.196 7.416 1.221 0.470 0.194  
1988 11.123 0.483 0.204 8.110 1.223 0.481 0.203  
1989 11.269 0.485 0.205 8.216 1.223 0.482 0.204  
1990 12.137 0.493 0.212 8.858 1.224 0.491 0.211  
1991 12.493 0.496 0.215 9.122 1.225 0.494 0.214  
1992 13.518 0.505 0.222 9.886 1.226 0.503 0.221  
1993 14.207 0.510 0.226 10.403 1.226 0.509 0.226  
1994 13.741 0.507 0.223 10.052 1.226 0.505 0.223  
1995 13.676 0.506 0.223 10.004 1.223 0.504 0.222  
1996 13.717 0.507 0.223 10.034 1.226 0.505 0.222  
1997 13.339 0.504 0.221 9.751 1.226 0.502 0.220  
1998 13.637 0.506 0.223 9.973 1.226 0.504 0.222  
1999 12.962 0.500 0.218 9.472 1.225 0.499 0.217  
2000 13.825 0.507 0.224 10.115 1.226 0.506 0.223  
2001 14.470 0.512 0.229 10.600 1.226 0.511 0.227  
2002 15.759 0.521 0.235 11.573 1.227 0.520 0.235  
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The following graph compares the calculated Gini coefficient with real GDP for the period of 
1977-2002.  
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CONTINUOUS L NORM ESTIMATION OF LORENZ CURVE 

Bijan BIDABAD 

(Using Sample Mean and Median) 

Calculations for 2002 USA data 
This program has been coded for MathCAD 11 

Mean = Sample mean of income distribution: Mean 103932:=  
Med = Sample median of income distribution: Med 51680:=  

σ 2 ln
Mean
Med







⋅:=  

Calculation of Log-Normal density function parameters m and s according to sample mean and median 
σ 1.18209=  

µ ln Med( ):= µ 10.85283=  

f w( )
1

w σ⋅ 2 π⋅⋅








exp
ln w( ) µ−( )2−

2 σ
2

⋅











⋅:=  

Log-Normal Probability_Density Function 

w 10 5− Mean
200

, 2 Mean⋅..:=  

Selective range for_Log-Normal plot, values of_increment and upper bound_may be changed  
Log-Normal plot 

f w( )

w

 

Precision Tolerance level TOL 0.00001:=

TOL value should be_ changed for more_ accurate solutions,_(less TOL = higher precision) 

y v( )
1

Mean




 0

v
ww f w( )⋅

⌠

⌡

d⋅:=  
(45) 

x v( )
0.00001

v
wf w( )

⌠

⌡

d:=  
(44) 
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Calculation for Gupta model 

Initial guess for v. This value should be changed for faster convergence and less iterations 
v 20000:=

t0 1
2

2
−:=  

(60) 
Calculating v for (80) v root x v( ) t0− v,( ):=

Calculated v v 27136.6437=

y(t )_ 0 y v( ) 0.04208= z0 y v( ):=  

A
t0
z0








2

:=  

(61), estimated A: A 15.54768=  

S

0

1
xln z0( ) ln t0( )− t0 1−( ) ln A( )⋅−

⌠

⌡

d:=  
(53) 

Sum of absolute residuals S 0=

Range variable for plotting the Lorenz curves 
X 0 0.005, 1..:=

Y X( ) X AX 1−
⋅:=  

Gupta Lorenz curve: 
Calculation of Gini coefficient 

Y X( )

X

X

Gini 1 2
0

1
XY X( )

⌠

⌡

d⋅−:=  

Gini 0.51967=

Calculation of Kakwani length of Lorenz curve 

Length
0

1

X1 AX 1− 1 X ln A( )⋅+( )⋅ 
2

+

⌠


⌡

d:=  
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 Length of Lorenz curve 

Length 1.5515=

Kakwani
Length 2−

2 2−
:=  

Kakwani index of length Kakwani 0.23437=

Calculation For Bidabad Model 

(76) t1 0.07549:=

Initial guess for v. This value should be changed for faster convergence and less iterations 
v 8000:=

Calculating v for (81) v root x v( ) t1− v,( ):=

Calculated v v 9464.04318=

y(0.07549) y v( ) 0.00442= z1 y v( ):=

(75) t2 0.40442:=

Initial guess for v. This value should be changed for faster convergence and less iterations 
v 27000:=

Calculatig v for (82) v root x v( ) t2− v,( ):=

Calculated v v 38826.25803=

y(0.40442) y v( ) 0.07722= z2 y v( ):=

A z1( )1.28986 z2( ) 3.68126−
⋅:=  

(79) 

(78) B 0.84857− ln z1( )⋅ 1.31722ln z2( )⋅+:=

Estimated A and B: A 11.41481= B 1.22709=  

S

0

1
xln z1( ) B ln t1( )⋅− t1 1−( ) ln A( )⋅−

⌠

⌡

d:=  
(62) 

Sum of absolute residuals S 0.00002=

Range variable for plotting the Lorenz curves 
X 0 0.005, 1..:=

Y X( ) XB AX 1−
⋅:=  Bidabad Lorenz curve 
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Y X( )

X

X

Calculation of Gini coefficient 

Gini 1 2
0

1
XY X( )

⌠

⌡

d⋅−:=  

Gini 0.51834=

Calculation of Kakwani length of Lorenz curve 

Length
0

1

X1 AX 1− XB 1−
⋅ B X ln A( )⋅+( )⋅ 

2
+

⌠


⌡

d:=  

Length of Lorenz curve 
Length 1.55118=

Kakwani
Length 2−

2 2−
:=  

Kakwani index of length 
Kakwani 0.23381=


