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Estimating Lorenz Curve for Iran 
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Abstract
In this paper, the L1 norm of continuous functions and corresponding continuous estimation of 

regression parameters are defined. The continuous L1 norm estimation problem of one and two 
parameters linear models in continuous case are solved. We proceed to use the functional form and 
parameters of probability distribution function of income to exactly determine the L1 norm 
approximation of the corresponding Lorenz curve of the statistical population under consideration. Iran 
family budget data were used to estimate income distribution for the period of 1362-1370. 

 
1. Introduction

The skewness of income distribution is persistently exhibited for different populations and in 
different times. It is discussed that Pearsonian family distributions are rival functions to explain 
income distribution. Lorenz curve is a method to analyze the skew distributions. There is a 
relation between the area under the Lorenz curve and the corresponding probability distribution 
function of the statistical population (see, Kendall and Stuart (1977)). That is, when the 
probability distribution function is known, we may find the corresponding Gini coefficient as the 
measure of inequality. 
 Estimation of the Lorenz curve is confronted with some difficulties. For this estimation, we 
should define an appropriate functional form which can accept different curvatures (see, Bidabad 
and Bidabad (1989a,b)). There is another problem, that is, to create the necessary data set for 
estimating the corresponding parameters of the Lorenz curve, a large amount of computation on 
raw sample income data is inevitable. Obviously, these problems despite of their computational 
difficulties, make the significance of the estimated parameters poor (see, Bidabad and Bidabad 
(1989a,b)). To avoid this, we try to estimate the functional form of the Lorenz curve by using 
continuous information. In this paper we use the probability density function of population 
income to estimate the Lorenz function parameters. The continuous L1 norm smoothing method 
which will be developed for estimating the regression parameters is used to solve this problem. 
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However, we concentrate on two rival probability density functions of Pareto and log-normal. 
Since, the former is simply integrable, there is no general problem to derive the corresponding 
Lorenz function and the function is uniquely derived. But in the latter case, the log-normal 
density function (which has better performance for full income range) than Pareto distribution 
(which better fits to higher income range, (see, Cramer (1973), Singh and Maddala (1976), Salem 
and Mount (1974)), is not integrable and we can not determine its corresponding Lorenz 
function. In this regard we should solve the problem by defining a general Lorenz curve 
functional form and applying the L1 norm smoothing to estimate the corresponding parameters. 
 In this paper continuous L1 norm estimation is developed by using a similar method proposed 
in Bidabad (1987a,88a,89a,b) for discrete case. Then the method is applied to estimation of the 
Lorenz curve functional forms which have been proposed by Gupta (1984) and Bidabad and 
Bidabad (1989,92). At the end, we use our formulation to estimate Gini ratio and Kakwani length 
indices of inequality for the United States for the period of 1971-1990, based on the assumption 
that income is distributed log-normally. 
 
2. L1 norm of continuous functions

Generally, Lp norm of a function f(x) (see, Rice and White (1964)) is defined by, 
 ||f(x)||p = ∫xεI |f(x)|pdx)1/p (1) 
Where, "I" is a closed bounded set.  The L1 norm of f(x) is simply written as, 
 ||f(x)||1 = ∫xεI |(x)|dx                                      (2) 
Suppose that the non-stochastic function f(x,β) of "x", is combined with stochastic disturbance 
term "u" to form y(x) as follows, 
 y(x) = f(x,β) + u (3) 
Where, β is unknown parameters vector.  Rewriting u as the residual of y(x)-f(x,β), for L1 norm 
approximation of "β" we should find "β" vector such that the L1 norm of "u" is minimum.  That 
is, 
 Min: S=||u||1=||y(x)-f(x,β)||1=∫xεI |y(x)-f(x,β)|dx                                   (4) 
 β

3. Linear one parameter L1 norm continuous smoothing
Redefine f(x,β) as βx and y(x) as the following linear function, 

 y(x) = βx + u (5) 
Where, "β" is a single (non-vector) parameter.  Expression (4) reduces to: 
 min: S = ||u||1 = ||y(x)- βx||1 = ∫xεI |y(x)-f(x,β)|dx                                                                     (6) 
 β
The discrete analogue of (6) is solved by Bidabad (1987a,88a,89a,b).  In these papers we 
proposed applying discrete and regular derivatives to the discrete problem by using a slack 
variable "t" as a point to distinguish negative and positive residuals. A similar approach is used 
here to minimize (6).  To do so in this case certain Lipschitz conditions are imposed on the 
functions involved (see, Usow (1967a)).  Rewrite (6) as follows, 
 Min: S = ∫xεI |x||y(x)/x – β|dx                                                                                                 (7) 
 β
For convenience, define "I" as a closed interval [0,1]. The procedure may be applied to other 
intervals with no major problem (see, Usow (1967a), Hobby and Rice (1965), Kripke and Rivlin 
(1965)).  To minimize this function we should first remove the absolute value sign of the 
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expression after the integral sign. Since "x" belongs to closed interval "I", y(x) (which is a linear 
function of "x") and also y(x)/x are smooth and continuous. Thus, since y(x)/x is uniformly 
increasing or decreasing function of "x", a value of tnI can be found to have the following 
properties, 
 y(x)/x < β if x < t 
 y(x)/x = β if x = t                                                       (8) 
 y(x)/x > β if x > t 
Value of the slack variable "t" actually is the border of negative and positive residuals. If value of 
"t" were known, from (8) (middle equation) we could calculate optimal value of "β" or inversely.  
But nor "t" neither "β" are known.  To solve this problem, according to (8), we can rewrite (7) as 
two separate definite integrals with different upper and lower bounds. 
 ⌠t ⌠1

min: S = - ⌡0 |x| (y(x)/x - β)dx +⌡t |x| (y(x)/x - β)dx                        (9) 
 β
Decomposition of (7) into (8) has been done by use of the slack variable "t". Since both "β" and 
"t" are unknown, to solve (9), we partially differentiate it with respect to "t" and "β" variables. 
 δS ⌠t ⌠1
─── = ⌡0 |x|dx - ⌡t |x|dx = 0                                    (10) 

 δβ 
and using Liebniz' rule to differentiate the integrals with respect to their variable bounds "t", 
yields, 
 δS y(t)                 y(t) 
 ─── = -|t| [─── - β] - |t| [─── - β] = 0 (11) 
 δt t t
Since "x" belongs to [0,1], equation (10) can be written as, 
 ⌠t ⌠1
⌡0 xdx - ⌡t xdx = 0                                      (12) 

or, 
 ½ t2 - ½ + ½t2 = 0 (13) 
Which yields, 
 t = √2/2                                                              (14) 
Substitute for "t" in equation (11), yields, 
 y(√2/2) 
 β = ───── (15) 
 √2/2 
Remember that y(t) is function y(x) evaluated at x=t.  Value of "β" given by (15) is the optimal 
solution of (6). The above procedure actually is generalization of Laplace weighted median for 
continuous case. 
 Before applying this procedure to Lorenz curve, let us develop the procedure for the two 
parameters linear model. 
 
4. Linear two parameters L1 norm continuous smoothing

Now, we try to apply the above technique to the linear two parameters model. Rewrite (4) as, 
 Min: S=||u||1=||y(x)-α-βx||1=∫xεI |y(x)-α-βx|dx                               (16) 
 α,β
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Where, "α" and "β" are two single (non-vector) unknown parameters and y(x) and "x" are as 
before. According to Rice (1964c), let f(α*,β*,x) interpolates y(x) at the set of canonical points 
{xi;i=1,2}, if y(x) is such that y(x)-f(α*,β*,x) changes sign at these xi's and at no other points in 
[0,1], then f(α*,β*,x) is the best L1 norm approximation to y(x) (see also, Usow  (1967a)). With 
the help of this rule, if we denote these two points to t1 and t2 we can rewrite (16) for I=[0,1] as,  
 ⌠t1 ⌠t2 ⌠1

S = ⌡0 [y(x)-α-βx]dx - ⌡t1 [y(x)-α-βx]dx + ⌡t2 [y(x)-α-βx]dx                             (17) 
Since t1 and t2 are also unknowns, we should minimize S with respect to α, β, t1 and t2. Taking 
partial derivative of (17) using Liebniz' rule with respect to these variables and equating them to 
zero, we will have, 
 δS ⌠t1 ⌠t2 ⌠t1
─── = - ⌡0 dx + ⌡t1 dx - ⌡t2 dx = 0                                          (18) 

 δα 
δS ⌠t1 ⌠t2 ⌠t1
─── = - ⌡0 dx + ⌡t1 dx - ⌡t2 dx = 0                                 (19) 

 δβ 
δS
─── = 2[y(t1) -α-βt1] = 0 (20) 

 δt1
δS
─── = - 2[y(t2) -α - βt2] = 0 (21) 

 δt2
Equations (18) through (21) may be solved simultaneously for α, β, t1 and t2. Thus, we have the 
following system of equations, 
 2t2 - 2t1 - 1 = 0 (22) 
 t2

2 - t1
2 - ½ = 0 (23) 

 y(t1) - α - βt1 = 0 (24) 
 y(t2) - α - βt2 = 0 (25) 
The solutions are, 
 t1=1/4                                                                    (26) 
 t2=3/4                                                                             (27) 
 α = y(3/4)-(3/4)β = y(1/4)-(1/4)β (28) 
 β = 2[y(3/4)-y(1/4)]                                                           (29) 
 This procedure, similar to that of multiple regression model for discrete case may be 
expanded to include "m" unknown parameters which is not discussed here.  Some computational 
methods for solving the different cases of m parameters model are investigated by Ptak (1958), 
Rice and White (1964), Rice (1964a,b,c,69,85), Usow (1967a), Lazarski (1975a,b,c,77) (see also, 
Hobby and Rice (1965), Kripke and Rivlin (1965), Watson (1981)). Now, let us have a look at 
Lorenz curve and its proposed functional forms. 
 
5. Lorenz curve

The Lorenz curve for a random variable with probability density function f(v) may be defined 
as the ordered pair2,

2 Taguchi (1972a,b,c,73,81,83,87,88) multiplies the second element of (30) by P(V|V≤v) which is not correct; his 
definition of (31) is equivalent to ours.    
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E(V|V≤v)
(P(V|V≤v), ──────) vεR (30) 

 E(V) 
Where "P" and "E" stand for probability and expected value operators. For a continuous density 
function f(v), (30) can be written as, 
 

⌠v
⌠v ⌡-∞ wf(w)dw 

 (⌡-∞ f(w)dw, ────────) ≡ (x(v),y(x(v)))                                   (31) 
 ⌠+∞l

⌡-∞wf(w)dw 
We denote (31) by (x(v),y(x(v))) where x(v) and y(x(v)) are its elements. Therefore, "x" is a 
function which maps "v" to x(v) and "y" is a function which maps x(v) to y(x(v)).  The function 
y(x(v)) is simply the Lorenz curve function. In recent years some functional forms for Lorenz 
curve have been introduced.  Among different proposed functions we use the forms of Gupta 
(1984) and Bidabad and Bidabad (1989,92) which benefits from certain properties (see their 
articles for more explanations). Gupta (1984) proposed the functional form, 
 y=xAx-1 A>1                                                                 (32) 
Bidabad and Bidabad (1989,92) suggest the following functional form: 
 y=xBAx-1 B≥1, A≥1 (33) 
 To estimate the above functions by regular estimating method, we should gather discrete data 
from the statistical population, and manipulate them to construct relevant x and y vectors to 
estimate "A" of (32) or "A" and "B" of (33).  If the probability distribution of income is known, 
instead of gathering discrete observations, we can estimate the Lorenz curve by using the 
continuous L1 norm smoothing method for continuous functions.  In the following section we 
proceed to apply this method to estimate the parameters "A" of (32) and "A" and "B" of (33) by 
using the information of probability density function of income. 
 
6. Continuous L1 norm smoothing of Lorenz curve

To estimate the Lorenz curve parameters when income probability density function is known, 
we can not always take straightforward steps. When the probability density function is easily 
integrable, there is no major problem in advance. We can find the functional relationship 
between the two elements of (31) by simple mathematical derivation. But, when integrals of (31) 
are not obtainable, another procedure should be adopted. 
 Suppose that income of a society is distributed with probability density function f(w). This 
density function may be a skewed function such as Pareto or log-normal, as follows 
 f(w)=θkθw-θ-1,       wrk>0, θ>0                                                  (34) 
 f(w)=[1/wσ√(2π)]exp{-[ln(w)-µ]2/2σ2},   wε(0,∞), µε(-∞,+∞), σ>0                              (35) 
These two distributions have been known as good candidates for presenting distribution of 
personal income. 
 In the case of Pareto density function of (34), we can simply derive the Lorenz curve function 
as follows. Let F(w) denote the Pareto distribution function: 
 F(w)=1-(k/w)θ (36) 
with mean equal to, 
 E(w)= θk/(θ-1),  θ>1                                                                    (37) 
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If we find the function y as stated by (31) as a function of x, the Lorenz function will be derived. 
Now, proceed as follows. Rearrange the terms of (31) as, 
 ⌠v

x(v) = ⌡-∞ f(w)dw                                                            (38) 
 ⌠ tv 
 y(x(v)) = [1/E(x)]⌡-∞ wf(w)dw                                                  (39) 
Substitute Pareto distribution function, 
 x(v) = F(v) = 1-(k/v)θ (40) 
 ⌠v

y(x(v)) = [(θ-1)/θk]⌡k wθkθw-θ-1dw                                                 (41) 
or, 
 y(x(v)) = 1-(k/v)θ-1 (42) 
Now, by solving (40) for "v" and substituting in (42), the Lorenz curve for Pareto distribution is 
derived as, 
 y = 1-(1-x)(θ-1)/θ (43) 
 As it was shown in the case of Pareto distribution, formula of Lorenz curve is easily obtained. 
But, if we select the log-normal density function (35), the procedure may not be the same. 
Because the integral of log-normal function has not been derived yet. In the following pages, the 
L1 norm smoothing technique will be developed to estimate the parameters of given functional 
forms (32) and (33) by using the continuous probability density function. 
 According to (30) and (31) independent and dependent variables of (32) and (33) may be 
written as, 
 ⌠v

x(v) = ⌡0 f(w)dw                                                           (44) 
 ⌠v

y(x(v)) = [1/E(x)] ⌡0 wf(w)dw                                             (45) 
Substitute (44) and (45) inside (32) and define random error term u as, 
 ⌠v

⌠v ⌠v ⌡0 f(w)dw-1     
 [1/E(w)]⌡0 wf(w)dw = ⌡0 f(w)dw.A                     . eu (46) 
or briefly, 
 y(x)=xAx-1eu (47) 
Similarly for the model (35), 
 ⌠v

⌠v ⌠v B ⌡0 f(w)dw-1   
 [1/E(w)]⌡0 wf(w)dw={⌡0 f(w)dw}  . A                    . eu (48) 
or briefly, 
 y(x)=xBAx-1eu (49) 
Taking natural logarithm of (47) and (49), gives, 
 ln y(x)=ln x + (x-1)ln A + u                                                                                               (50) 
 ln y(x)=B.ln x + (x-1)ln A + u                                                                                           (51) 
With respect to properties of Lorenz curve and probability density function of f(w) and equations 
(46) to (49), it is obvious that x belongs to the interval [0,1]. Thus the L1 norm objective function 
for minimizing (50) or (51) is given by, 
 ⌠1
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min: S = ⌡0 |u|dx                                                                                                                (52) 
Now, let us deal with L1 norm estimation of "A" of Lorenz curve functional form (32) (redefined 
by (50)). The corresponding L1 norm objective function will be, 
 ⌠1

min: S = ⌡0 |ln y(x) - ln x - (x-1) ln A|dx                                                                            (53) 
 A
or, 
 ⌠1

min: S = ⌡0 |x-1||[ln y(x)-ln x]/(x-1) - ln A|dx                                                                     (54) 
 A
By a similar technique used by (9), we can rewrite (54) as,  
 ⌠t ⌠1

min: S = ⌡0 |x-1|{[ln y(x)-ln x]/(x-1)-ln A}dx - ⌡t |x-1|{[ln y(x)-ln x]/(x-1)-ln A}dx           
(55) 
 A
since, 0≤x≤1 we have, 
 ⌠t ⌠1

min: S = - ⌡0 [ln y(x) - ln x - (x-1) ln A]dx +⌡t [ln y(x) - ln x - (x-1) ln A]dx                     (56) 
 A
Differentiate (56) partially with respect to "t" and "A" and equate them to zero; 
 δS ⌠t ⌠1
−−−− = + ⌡0 [(x-1)/A]dx - ⌡t [(x-1)/A]dx = 0                                                   (57) 

 δA
δS
−−−− = - 2[ln y(t) - ln t - (t-1)ln A] = 0                                                                              (58) 

 δt
From equation (57), we have, 
 t = 1±√2/2                                                                                                   (59) 
Since "t" should belong to the interval [0,1], we accept, 
 t = 1-√2/2                                                                                                                           (60) 
Substitute (60) in (58), and solve for "A", gives the L1 norm estimation for "A" equal to, 
 1-√2/2          
 A = [−−−−−−−−]√2 (61) 
 y(1-√2/2)  
Now, let us apply this procedure to another Lorenz curve functional form of (33) (redefined by 
(51)).  Rewrite L1 norm objective function (52) for the model (51), 
 ⌠1

min: S = ⌡0 |ln y(x) - B ln x - (x-1) ln A|dx                                                                        (62) 
 A,B 
or, 
 ⌠1

min: S=⌡0 |x-1||[lny(x)]/(x-1)-(lnx)/(x-1)-lnA|dx                                                               (63) 
 A,B 
The objective function (63) - by some changing on variables - is similar to (16). Thus, by a 
similar procedure to those of (17) through (29) we can write "S" as, 
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⌠t1
min: S = ⌡0 |x-1|{[lny(x)]/(x-1)-(lnx)/(x-1)-lnA}dx 

 A,B 
 ⌠t2

- ⌡t1|x-1|{[lny(x)]/(x-1)-(lnx)/(x-1)-lnA}dx 
 

⌠1
+ ⌡t1|x-1|{[lny(x)]/(x-1)-(lnx)/(x-1)-lnA}dx                                                                 (64) 

Since  0≤x≤1, then (64) reduces to, 
 ⌠t1 ⌠t2

min: S = - ⌡0 [ln y(x) - B ln x - (x-1) ln A]dx + ⌡t1 [ln y(x) - B ln x - (x-1) ln A]dx 
 A,B 
 ⌠1

- ⌡t2 [ln y(x) - B ln x - (x-1) ln A]dx                                                                          (65) 
Differentiate "S" partially with respect to "A", "B", t1 and t2 and equate them to zero, 
 δS 1 ⌠t1 ⌠t2 ⌠1
−−− = − [ ⌡0 (x-1)dx -⌡t1 (x-1)dx +  ⌡t2 (x-1)dx  ]  = 0                                                    (66) 

 δA A
δS ⌠t1 ⌠t2 ⌠1
−−−− = ⌡0 ln(x)dx - ⌡t1 ln(x)dx +  ⌡t2 ln(x)dx = 0                                                           (67) 

 δB
δS
−−−− = -2{ln[y(t1)] - Bln(t1) - (t1-1)ln(A)} = 0                                                                   (68) 

 δt1

δS
−−−− = 2{ln[y(t2)] - Bln(t2) - (t2-1)ln(A)} = 0                                                                    (69) 

 δt2
The above system of simultaneous equations can be solved for the unknowns t1, t2, "A" and "B".  
Equation (66) is reduced to, 
 t1

2-t2
2-2(t1-t2)-1/2 = 0                                                                                                         (70) 

Equation (67) can be written as, 
 t1(ln t1-1) - t2(ln t2-1) – 1/2 = 0                                                                                           (71) 
Calculate t1 from (70) as, 
 t1 = 1 ±√q (t2

2-2t2+3/2)                                                                                                       (72) 
Since 0st1s1, we accept, 
 t1 = 1 - √(t2

2-2t2+3/2)                                                                                                         (73) 
Substitute t1 from (73) into (71), and rearrange the terms, gives; 
 [1-√(t2

2-2t2+3/2)] 
 [1-√(t2

2-2t2+3/2)] 
 ln −−−−−−−−−−−−−−−−−−−−− + t2-3/2+√(t2

2-2t2+3/2) = 0                                               (74) 
 t2

t2 
The root of equation (74) may be computed by a suitable numerical algorithm. However, it has 
been computed and rounded for five digits decimal point as, 
 t2 = 0.40442 (75) 
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Value of t1 is derived by substituting t2 into (73); 
 t1 = 0.07549 (76) 
Values of "B" and "A" are computed from (68) and (69) using t2 and t1 given by (75) and (76). 
Thus, 
 (t2-1)lny(t1) - (t1-1)lny(t2)

B = −−−−−−−−−−−−−−−−−− (77) 
 (t2-1)ln(t1) - (t1-1)ln(t2)
or, 
 B = -0.84857ln[y(0.07549)] + 1.31722ln[y(0.40442)]                                                        (78) 
and, 
 A = [y(0.07549)]1.28986[y(0.40442)]-3.68126 (79) 
Now, let us describe how equation (61) for the model (32) and equations (78) and (79) for the 
model (33) can be used to estimate the parameters of the Lorenz curve when the probability 
distribution function is known.  In the model (32) we should solve (44) for x(v)=1-√2/2.  On the 
other hand, we should find value of "v" such that, 
 ⌠v

x(v) = ⌡0 f(w)dw = 1-√2/2                                                                                                 (80) 
By substituting this value of "v" into (45), value of y(1-√2/2) is computed. The value y(1-√2/2) is 
used to compute the parameter "A" given by (61) for model (32). 
 The procedure for the model (33) is also similar, with the difference that two values of "v" 
should be computed.  Once two different values of "v" are computed as follow, 
 ⌠v

x(v) = ⌡0 f(w)dw = 0.07549                                                                                              (81) 
 ⌠v

x(v) = ⌡0 f(w)dw = 0.40442                                                                                              (82) 
Values of "v" are substituted in (45) to find y(0.07549) and y(0.40442). These values of "y" are 
used to compute the parameters of the model (33) by substituting them into (78) and (79). 
 The only problem remains is computation of related definite integrals of x(v) defined by (80), 
(81) and (82) which can be done by appropriate numerical methods such as the enclosed sample 
computer program coded for MathCAD 11 for a complete example. 
 
7. Income distribution in Iran

In order to compute the Lorenz curve for Iran we try to apply the above procedure for both (32) 
and (33) propositions and using log-normal distribution function assumption.  The source of data is 
"Statistical Center of Iran" who computed the mean and variance of income for urban and rural families 
for the period of 1362-1370 (1983-1991) from "Family Budget Surveys" of different years.  These data 
are given by table 1.  The amount of mean and variance of income were used to derive the log-normal 
density function parameters µ and σ. The explained procedure of estimation then applied to the series of 
data of table 1, and corresponding results are reported in table 2.  A sample computer program is also 
enclosed at the end of these pages. 
 

Table 1. 
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Urban Data Rural Data 
Year Sample 

size 
Income 
Mean 

Income variance Sample 
size 

Income 
Mean 

Income variance 

1362 14747 918423 1106199100048 12440 471942 192638591017i
1363 14728 1034169 1174389430497 12420 524623 351371674839i
1364 13976 1037084 1792475461430 13587 531098 301917047049i
1365 2745 1126638 1300389710415 3015 568557 404222563256i
1366 2748 1147497 1410976253551 3018 710145 491696298459i
1367 3987 1360121 2551576757245 4331 908530 1743056317121i
1368 5492 1505970 4786980002705 6028 1052371 1019597224716i
1369 9095 2010471 12587903327408 9348 1251060 5529127350603i
1370 9168 2840790 66958717265779 9504 1563116 7505679968729i

Source: Statistical Center of Iran. 
 

Table 2. 
Gupta Model Bidabad Model 

A Gini Kakwani A B Gini Kakwan
iYear 

Urban estimation 
1362 7.259 0.430 0.163 5.314 1.211 0.426 0.161i
1363 6.279 0.409 0.148 4.620 1.204 0.405 0.146i
1364 8.915 0.457 0.183 6.500 1.217 0.453 0.181i
1365 5.943 0.401 0.143 4.385 1.202 0.397 0.141i
1366 6.158 0.407 0.146 4.535 1.203 0.402 0.144i
1367 7.574 0.436 0.167 5.539 1.212 0.432 0.165i
1368 11.021 0.482 0.203 8.034 1.223 0.480 0.202i
1369 15.841 0.522 0.236 11.676 1.227 0.521 0.236i

Rural estimation 
1370 42.211 0.605 0.313 33.118 1.261 0.607 0.316i
1362 5.220 0.382 0.129 3.878 1.195 0.377 0.127i
1363 7.099 0.427 0.160 5.201 1.210 0.423 0.159i
1364 6.152 0.406 0.146 4.531 1.203 0.402 0.144i
1365 6.978 0.424 0.159 5.115 1.209 0.420 0.157i
1366 5.718 0.396 0.139 4.227 1.200 0.391 0.137i
1367 11.025 0.482 0.203 8.037 1.223 0.480 0.202i
1368 5.472 0.389 0.134 4.054 1.198 0.384 0.132 
1369 17.955 0.534 0.247 13.258 1.227 0.533 0.247i
1370 15.683 0.521 0.235 11.518 1.227 0.519 0.234i
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