
Rev
ie

w
 C

op
y

1

L1�� Norm Based Data Analysis and Related Methods 
 

(1632-1989) 
 

Bijan Bidabad1

Keywords: L1 norm, Regression, Algorithm, Computer  

Abstract: 
This paper gives a rather general view on the L1�� norm criterion on the area of data analysis and 

related topics. We tried to cover all aspects of mathematical properties, historical development, 
computational algorithms, simultaneous equations estimation, statistical modeling, and application of 
the L1�� norm in different fields of sciences. 
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Although the L1�� norm is an old topic in science, but lack of a general book or paper on this 
subject induced me to gather a relatively complete list of references in this paper. The methods related 
to L1�� norm are very broad and summarizing them is very difficult. However, it has been tried to have a 
glance on almost all related areas. The sections are designed as separate modules, so that the reader 
may skip some of the sections without loss of continuity of the subject. 

While the least squares method of estimation of the regression parameters is the most 
commonly used procedure, some alternative techniques have received widespread attention in recent 
years. Conventionally, interest in other methods of estimation has been generated by the 
unsatisfactory performance of least squares estimators in certain situations when some model 
assumptions fail to hold or when large correlations exist among the regressors. However, the least 
squares regression is very far from optimal in many non-Gaussian situations, especially when the 
errors follow distributions with longer tails. In particular, when the variance of the error is infinite. 
While intuition may dispel consideration of errors with infinite variance, in many cases, studies have 
shown that, in fact, certain distributions with infinite variances may be quite appropriate models. An 
infinite variance means thick tail error distribution with lots of outliers. Of course, observed 
distributions of economic variables will never display infinite variances. However, the important issue 
is not that the second moment is actually infinite, but the interdecile range in relation to interquartile 
range is sufficiently large that one is justified in acting as though the variance is infinite. Even when 
the majority of the errors in the model follow a normal distribution, it often occurs that a small 
number of observations are from a different distribution. That is the sample is contaminated with 
outliers. Since least squares gives a lot of weight to outliers, it becomes extremely sample dependent 
and it is well known that the performance of this estimator is markedly degraded in this situation. It 
has been stated that even when errors follow a normal distribution, alternative to least squares may be 
required; especially if the form of the model is not exactly known or any other specification error 
exists. Further, least squares is not very satisfactory if the quadratic loss function is not a satisfactory 
measure of loss. Loss denotes the seriousness of the nonzero prediction error to the investigator, 
where prediction error is the difference between the predicted and the observed values of the response 
variable. It has been shown that for certain economic problems least absolute errors gives more 
satisfactory results than least squares, because the former is less sensitive than the latter to extreme 
errors, and consequently is resistant to outliers. It should be noted that the least absolute errors 
estimates have maximum likelihood properties and hence are asymptotically efficient when the errors 
follow the Laplace distribution. 

Although least absolute errors estimator is very old, it has emerged in the literature again and 
has attracted attention in the last two decades because of unsatisfactory properties of least squares. 
Now, this method is discussed in the econometrics textbooks such as Kmenta (1986) and Maddala 
(1977). Many Master's and Ph.D dissertations have been written on this subject in different 
departments such as Lawson (1961), Burgoyne (1965), Gentleman (1965), Barrodale (1967), Oveson 
(1968), Lewis (1969), Cline (1970), Hunt (1970), Groucher (1971), Henriksson (1972), Bassett 
(1973), Forth (1974), Anderson (1975), Ronner (1977), Nyquist (1980), Clarke (1981), Kotiuga 
(1981), Gonin (1983), Busovaca (1985), Kim ( ), Bidabad (1989a,b) which are more recent (see 
bibliography for the corresponding departments and universities). 

Robust property of this estimator is its advantage to deal with large variance error distributions. 
Since many economic phenomena such as distribution of personal income, security returns, 
speculative prices, stock and commodity prices, employment, asset size of business firms, demand 
equations, interest rate, treasury cash flows, insurance, price expectations, and many other economic 
variables fall within the category of infinite variance (see, Ganger and Orr (1972), Nyquist and 
Westlund (1977), Fama (1965), Goldfeld and Quandt (1981), Sharpe (1971)) it is necessary to turn the 
economists attention to this estimator. There are many other works which confirm the superiority of 
least absolute to least squares estimator such as interindustry demand analysis of Arrow and 
Hoffenberg (1959), investment models of Meyer and Glauber (1964), security and portfolios analysis 
of Sharpe (1971), Danish investment analysis of Kaergard (1987) and so forth. 

Many new economic theories weaken the assumption of rationality of human behavior. This 
relative irrationality is a major source of large variances and outliers in economic data. Therefore the 
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least absolute errors estimator becomes a relevant estimator in the cases that rationality is a strong 
assumption. 

Another major application of this estimator is on data with measurement errors. This type of 
errors makes variances large and forces the observations to locate far from reality which obviously 
causes outliers. Existence of two important types of measurement errors, sampling and non sampling 
errors, specifically in countries with poor statistics such as developing countries make this estimator a 
basic tool of analysis. 

Unknown specification errors in regression models because of complexity of human behavior 
are always occurred in mathematical formulation of human related problems. Specification error 
occurs whenever formulation of the regression equation or one of the underlying assumptions is 
incorrect. In this context when any assumption of the underlying theory or the formulation of the 
model does not hold, a relevant explanatory variable is omitted or an irrelevant one is included, 
qualitative change of the explanatory variable is disregarded, incorrect mathematical form of the 
regression is adopted, or incorrect specification of the way in which the disturbance enters the 
regression equation is used and so on; specification error exits (see also, Kmenta (1986)). Since 
specification errors are not always clear to researcher, least squares is a poor estimator and other 
alternatives as least absolute errors estimators become attractive. 

Although least absolute errors estimator benefits from optimal properties in many econometric 
problems, it is not a commonly used tool. This is to some extent due to difficulties of calculus with 
absolute value functions. When the model is enlarged and equations enter simultaneously, difficulties 
of computation increase. Another problem with this estimator is that the properties of the solution 
space is not completely clear and the corresponding closed form of the solution have not been derived 
yet. 

Thus these three important problems of algebraic closed form, computational difficulties and 
solution space properties are the main obstacles that prevent the regular use of L1�� norm estimator. Any 
attempt to remove these obstacles are worthy. 

2. Lp norm and regression analysis
Given a point u=(u1,...,un) in Rn, Minkowski norm or Lp norm can be written as the following 

expression, 
n

││u││p = dp(u,0) =[ Σ │ui│p]1/p (1) 
i=1 

When p=2 we are confronted with Euclidian or L2 norm. Thus, Euclidian distance is a special case of 
Lp distance (see, Ralston and Rabinowitz (1985)). 

The following overdetermined system of equations is given, 
y = Xß + u (2) 

where, y is a nx1 vector of dependent variables, X, a nxm matrix of independent or explanatory 
variables with n>m, ß, a mx1 vector of unknown parameters and u is a nx1 vector of random errors. 
The problem is to find the unknown vector ß such that the estimated value of y be close to its 
observed value. A class of procedures which obtains these estimated values is Lp norm minimization 
criterion (see, Narula (1982)). In this class ││u││p is minimized to find the ß vector, 

min S = min ││u││p = min ││y-Xß││p =
ß ß ß

n n m
min [ Σ │yi-xiß│p ]1/p = min [ Σ │yi- Σ ßjxij│p ]1/p ==> 

ß i=1                             ß i=1      j=1 
 n                               n         m 

min  Σ │yi- xiß│p = min  Σ │yi- Σ ßjxij│p (3) 
ß i=1                      ß i=1       j=1 
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where yi is the ith element of y and xi is the ith row of the matrix X. Any value of pε[1,∞] may be 
used to find ß in (3) (see, Money et al (1978a), Rice (1933)), but each value of p is relevant for 
special types of error distributions. Many authors have investigated this problem (see, Barrodale 
(1968), Barr et al (1980a,b,c,81a,b), Money et al (1978b,82), Gonin and Money (1985a,b), Sposito 
and Hand (1980), Sposito and Hand and Skarpness (1983), Sposito (1987b)). However, justification 
of p comes from the following theorem (see, Kiountouzis (1971), Rice and White (1964), Hogan 
(1976), Taguchi (1974,78)). 
Theorem: If in model (2), X is nonstochastic and E(u)=0, E(uuT)=σ²I, and u distributed with 
f(u)=h.exp(-k│u│p), where h and k are constants and pε[1,∞]; then the "best" ß with maximum 
likelihood properties is a vector which comes from minimization of (3). 

Certain values of p have particular importances (see, Box and Tiao (1962), Theil (1965), 
Anscombe (1967), Zeckhauser and Thompson (1970), Blattberg and Sargent (1971), Kadiyala (1972), 
Maddala (1977)). L∞ norm minimization of (3) is called Tchebyshev or uniform norm minimization or 
minimum maximum deviations and has the maximum likelihood properties when u has a uniform 
probability distribution function. When p=2 we are confronted with least squares method. In this case 
if the errors distribution is normal it is the best unbiased estimator (see, Anderson (1962), Theil 
(1971)). When p=1, we have L1�� norm or Gershgorin norm minimization problem. It is also called least 
or minimum sum of absolute errors (MSAE, LSAE), minimum or least absolute deviations, errors, 
residuals, or values (MAD, MAE, MAR, MAV, LAD, LAE, LAR, LAV), L1�� norm fit, approximation, 
regression or estimation. 

Harter (1974a,b,75a,b,c,76) monumental papers provide a chronology of works on nearly all the 
estimators which includes L1�� norm estimation too. A concise review of data analysis based on the L1� �
norm is presented by Dodge (1987) and a brief discussion is given by Gentle (1977) too. Narula and 
Wellington (1982) and Narula (1987) give a brief and concise presentation of L1�� norm regression. 
Blattberg and Sargent (1971) show that if the errors of the regression follow the second law of 
Laplace (two- tailed exponential distribution) with probability density function 

f(u)=(1/2θ).exp(-│u│/θ) (4) 
where var(u)=2θ², then L1�� norm minimization leads to maximum likelihood estimator. 
 
3. Properties of the L1## norm estimation

Similar to other criteria, the L1�� norm estimation has its own properties which are essential in 
computational and statistical viewpoints. The more important properties are as follows. 
 
3.1 Invariance property 

An estimator ß^(y,X) of population parameter ß is invariant if, 
ß^(θy,X) = θß^(y,X),          θε[0,∞) (5) 

Gentle and Sposito (1976), Koenker and Bassett (1978) have proved that the Lp norm estimator of ß is 
invariant when the regression model is linear. The Lp norm estimator is not invariant for general 
nonlinear models. The invariance property is the homogeneity of degree one of the ß^ solution 
function. 
 
3.2 Transformation of variables 

If θεRm, by transforming y to y+Xθ the optimal value of ß^ will increase by θ, (see, Koenker 
and Bassett (1978)); 

ß^(y+Xθ,X) = ß^(y,X) + θ (6) 
If A is a mxm nonsingular matrix, transformation of X to XA premultiplies optimal ß^ by inverse of A
(see, Taylor (1974), Koenker and Bassett (1978), Bassett and Koenker (1978)). 

ß^(y,XA) = A-1ß^(y,X) (7) 
 

3.3 convexity of the objective function 
 To show the convexity of S in (3), suppose m=1; the objective function (3) reduces to 
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n n
S = Σ │yi - ß1xi1│ = Σ Si (8) 

 i=1                       i=1 
where Si=│yi-ß1xi1│. If we plot Si as a function of ß1 then we will have a broken line in Sxß1 plane 
and its function value is zero at ßi1=yi/xi1. The slope of the half-lines to the left and right of ßi1 are      
-│xi1│ and │xi1│ respectively. So, Si's are all convex and hence their sum S is also convex with 
slope at any ß1 equal to the sum of the slopes of the Si's at that value of ß1 (see, Karst (1958), Taylor 
(1974)). 

Consider now (3) when m=2, 
 n                                      n 

S = Σ │yi - ß1xi1 – ß2xi2│ = Σ Si (9) 
 i=1                                  i=1 

Where Si=│yi-ß1xi1-ß2xi2│. We may plot Si as a function of ß1 and ß2. Every Si is composed of 
two half planes in Sxß1xß2 space that intersect in the ß1xß2 plane. Thus Si is convex downward 
which its minimum locates on the intersection of the two half-planes. Since Si's are all convex, their 
sum S surface is convex too. Extension to m independent variables is straightforward. In this case 
each Si consists of two m dimensional half- hyperplanes in Sxß1x...xßm space intersecting in the 
ß1x...xßm hyperplane, and as before is convex in the opposite direction of the S axis. S, which is the 
sum of all these half-hyperplanes forms a polyhedronal hypersurface which is convex too. 
 
3.4 Zero residuals in optimal solution 
 L1�� norm regression hyperplane always passes through r of thy n data points, where r is rank of 
the X matrix. Usually X is of full rank and thus r is equal to m. So, for number of parameters there 
exist zero residuals for the minimal solution of (3). This implies that L1�� norm regression hyperplane 
must pass through m observation points (see, Karst (1959), Taylor (1974), Money et al (1978), Appa 
and Smith (1973), Gentle and Sposito and Kennedy (1977)). 

This phenomenon is because of the polyhedronal shape of the S. It is obvious that the minimum 
solution occurs on at least one of the corners of S, and the corners of S are the loci of changes in 
slopes of the polygonal hypersurface. Note that these corners and also edges of S will be above the 
intersections of m subset of the following n hyperplanes. 

m
yi - Σ ßjxij = 0    iε{1,...,n}                                                                                               (10) 

 j=1 
Since each of these hyperplanes corresponds to a particular m subset of observations, there will be m 
observations that lie on the regression hyperplane (see, Taylor (1974)). 
 
3.5 Optimality condition 
 This condition is derived from the Kuhn-Tucker necessary condition of nonlinear programming 
and proved by Gonin and Monpy (1987b) and Charalambous (1979). Define A={i│yi-xiß*=0} and 

I={i│yi-xiß*╪0}; in linear L1�� norm regression, a necessary and sufficient condition for ß* to be a 
global L1�� norm solution is the existence of multipliers αiε[-1,1] such that: 

Σ αixi + Σ sgn(yi-xiß*)xi = 0 (11) 
 iεA iεI

(see also, El-Attar and Vidyasagar and Dutta (1976). Appa and Smith (1973) showed that this solution 
is a hyperplane such that: 

│n+ - n-│ ≤ m (12) 
where n+ and n- are the number of observations above and below the regression hyperplane 
respectively. 
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3.6 Unique and non-unique qolutions 
 Since S is a convex polyhedronal hypersurface, it always has a minimum. This solution is often 
unique. Sometimes the shape of S is such that a line or a closed polygon or polyhedron or 
hyperpolyhedron segment of S is parallel to ß1x...xßm hyperplane. On this case the L1�� norm 
regression parameters are not unique and infinite points of the mentioned hyperpolyhedron are all 
solutions (see, Moroney (1961), Sielken and Hartley (1973), Taylor (1974), Farebrother (1985), 
Sposito (1982), Harter (1977)). 

 
3.7 Interior and sensitivity analysis 

Narula and Wellington (1985) Showed that the L1�� norm estimates may not be affected by 
certain data points. Thus deleting those points does not change the estimated values of the regression 
parameters. In another discussion, they called sensitivity of L1�� norm estimates, determined the 
amounts by which the value of response variable yi can be changed before the parameters estimates 
are affected. Specifically, if value of yi increases or decreases without changing the sign of ui, the 
solution of the parameters will not change (see, Gauss (1809), Farebrother (1987b)). 

For topology of L1�� norm approximation and its properties see Kripke and Rivlin (1965), Vajda 
(1987), Hromadka II et al (1987). Other properties of the L1�� norm regression are discussed by Gentle 
and Kennedy and Sposito (1976,77), Assouad (1977), Sposito and Kennedy and Gentle (1980), 
Bassett (1987,88a,b). 

 
4. Chronology and historical development (1632-1928)

The origin of L1�� norm estimation may be traced back to Galilei (1632). In determining the 
position of a newly discovered star, he proposed the least possible correction in order to obtain a 
reliable result (see, Ronchetti (1987) for some direct quotations). Boscovich (1757) for the first time 
formulated and applied the minimum sum of absolute errors for obtaining the best fitting line given 
three or more pairs of observations for a simple two variable regression model. He also restricts the 
line to pass through the means of the observation points. That is, 

 n
min :   Σ │yi-ß0-ß1xi1│
ß0,ß1 i=1 

n (13) 
s.to:  Σ (yi-ß0-ß1xi1)=0 

i=1 
Boscovich (1760) gives a simple geometrical solution to his previous suggestion. This paper has been 
discussed by Eisenhart (1961) and Sheynin (1973). In a manuscript Boscovich poses the problem to 
Simpson and Simpson gives an analytical solution to the problem (see, Stigler (1984)). 

Laplace (1773) provides an algebraic formulation of an algorithm for the L1�� norm regression 
line which passes through the centroid of observations. In Laplace (1779), extension of L1�� norm 
regression to observations with different weights has also been discussed. Prony (1804) gives a 
geometric interpretation of Laplace's (1779) method and compares it with other methods through an 
example. Svanberg (1805) applies Laplace's method in determining a meridian arc and Von Lindenau 
(1806) uses this method in determination of the elliptic meridian. 

Gauss (1809) suggests the minimization of sum of absolute errors without constraint. He 
concludes that this criterion necessarily sets m of the residuals equal to zero, where m is number of 
parameters and further, the solution obtained by this method is not changed if the value of dependent 
variable is increased or decreased without changing the sign of the residual. This conclusion, is 
recently discussed by Narula and Wellington (1985) which explained in previous section under the 
subject of interior and sensitivity analysis. He also noted that Boscovich or Laplace estimators which 
minimize the sum of absolute residuals with zero sum of residuals constraint, necessarily set m-1 of 
the residuals equal to zero (see, Stigler (1981), Farebrother (1987b)). 
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Mathieu (1816) used Laplace's method to compute the eccentricity of the earth. Van Beeck-
Calkoen (1816) advocates the using of the least absolute values criterion in fitting curvilinear 
equation obtained by using powers of the independent variable. 

Laplace (1818) adapted Boscovich's criterion again and gave an algebraic procedure (see, 
Farebrother (1987b)). Let x1* and y* be the means of xi1 and yi then, 

ß0 = y* - ß1x1* (14) 
Value of ß1 is found by, 

n
min: S = Σ │yi~ - ß1xi1~│ (15) 

ß1 i=1 
where, xi1~ and yi~ are deviations of xi1 and yi from these means respectively. By rearranging the 
observations in descending order of yi~/xi1~ values, Laplace notes that S is infinite when ß1 is 
infinite and decreases as ß1 is reduced. ß1 reaches the critical value yt~/xt1~ when it again begins to 
increase. This critical value of ß1 is determined when, 

t-1                    n                   t 
Σ │xi1~│ < ½ Σ │xi1~│ ≤ Σ │xi1~│ (16) 

 i=1                  i=1                i=1 
This procedure to find a1 is called weighted median, and has been used in many other algorithms such 
as Rhodes (1930), Singleton (1940), Karst (1958), Bloomfield and Steiger (1980), Bidabad 
(1987a,b,88a,b) later. Bidabad (1987a,b,88a,b) derives the condition (16) via discrete differentiation 
method. 

Fourier (1824) formulates least absolute residuals regression as what we would now call linear 
programming; that is minimization of a linear objective function subject to linear inequality 
constraints. 

Edgeworth (1883) presents a philosophical discussion on differences between minimizing mean 
square errors and mean absolute errors. Edgeworth (1887a,b) proposed a simple method for choosing 
the regression parameters. By fixing m-1 of the parameters, he used Laplace's procedure to determine 
the optimal value of the remaining parameter. Repeating this operation for a range of values for m-1 
fixed parameters he obtained a set of results for each of m possible choices of the free parameters. 
Edgeworth drops the restriction of passing through the centroid of data. Turner (1887) discusses the 
problem of non unique solutions under the least absolute error criterion as a graphical variant of 
Edgeworth (1887a) as a possible drawback to the method. Edgeworth (1888) replies to Turner's 
criticism by proposing a second method for choosing the two parameters of least absolute error 
regression of a simple linear model which makes no use of the median loci of his first method. 
Edgeworth, in this paper, followed Turner's suggestion for graphical analysis of steps to reach the 
minimum solution. 

Before referring to double median method of Edgeworth (1923), it should be noted that Bowley 
(1902) completes the Edgeworth's (1902) paper by a variant of double median method which 
presented after him by Edgeworth (1923). This variant ignores the weights attached to errors. 

Edgeworth (1923) discussed the more general problem of estimating the simple linear 
regression parameters by minimizing the weighted sum of the absolute residuals. He restates the 
rationale for the method and illustrates its usage through several examples. He also considers the non 
unique solution problem. His contribution is called double median method. 

Estienne (1926-28) proposes replacing the classical theory of errors of data based on least 
squares with what he calls a rational theory based on the least absolute residual procedure. Bowley 
(1928) summarizes the Edgeworth's contributions to mathematical statistics which includes his work 
on L1�� norm regression. Dufton (1928) also gives a graphical method of fitting a regression line. 

Farebrother (1987b) summarizes the important contributions to L1�� norm regression for the 
period of 1793-1930. For more references see also Crocker (1969), Harter (1974a,b,75a,b,c,76), 
Dielman (1984). 
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Up to 1928, all algorithms had been proposed for simple linear regression. Though some of 
them use algebraic propositions, are not so organized to handle multiple L1�� norm regression problem. 
In the next section we will discuss the more elaborated computational methods for simple and 
multiple L1�� norm regressions not in a chronological sense; because many digressions have been 
occurred. We may denote the period of after 1928 the time of modern algorithms in the subject of L1� �
norm regression. 

 
5. Computational augorithms

Although, a closed form of the solution of L1�� norm regression has not been derived yet, many 
algorithms have been proposed to minimize its objective function (see, Cheney (1966), Chambers 
(1977), Dielman and Pfaffenberger (1982,84)). Generally, we can classify all L1�� norm algorithms in 
three major categories as, direct descent algorithms, simplex type algorithms and other algorithms 
which will be discussed in the following sections sequentially. 
 
5.1 Direct descent alborithms 

The essence of the algorithms which fall within this category is finding an steep path to 
descend down the polyhedron of the L1�� norm regression objective function. Although the Laplace's 
method (explained herein before) is a special type of direct descent algorithms; origin of this 
procedure in the area of L1�� norm can be traced back to the algorithms of Edgeworth which were 
explained in the previous section. 

Rhodes (1930) found Edgeworth's graphical solution laborious, therefore, he suggested an 
alternative method for general linear model which may be summarized as follows (see, Farebrother 
(1987b)). Suppose, we have n equations with m<n unknown parameters. To find L1�� norm solution of 
this overdetermined system of equations he tries to reduce the m parameter model to a weighted 
median one parameter problem by solving m-1 of n equations (see also Bidabad (1989a,b)). Rhodes 
(1930) explained his algorithm by an example and did not give any proof for convergence. Bruen 
(1938) reviews the L1� � norm regression methods presented by earlier authors. He also compares L1��, L2

and L∞ norms regressions. 
Singleton (1940) applied Cauchy's steepest descent method (see, Panik (1976)) for the general 

linear L1�� norm regression. In this paper a geometrical interpretation of gradient on L1�� norm 
polyhedron and some theorems about existence and uniqueness of solution and convexity property all 
were given. This paper has not been clearly written, for discussion of the algorithm see Bidabad 
(1989a,b). 

Bejar (1956,57) focuses on consideration of residuals rather than on the vector of parameters. 
He puts forth a procedure with the essence of Rhodes (1930). However, he is concerned with two and 
three parameter linear models. 

Karst (1958) gives an expository paper for one and two parameter regression models. In his 
paper, Karst without referring to previous literature actually reaches to the Laplace proposition to 
solve the one parameter restricted linear model and for the two parameter model, he proposed an 
algorithm similar to that of Rhodes (1930). His viewpoint is both geometrical and algebraic and no 
proof of convergence for his iterative method is offered. Sadovski (1974) uses a simple "bubble sort" 
procedure and implements Karst algorithm in Fortran. Sposito (1976) pointed out that the Sadovski's 
program may not converge in general. Sposito and Smith (1976) offered another algorithm to remove 
this problem. Farebrother (1987c) recodes Sadovski's implementation in Pascal language with some 
improvement such as applying "straight insert sort". 

Usow (1967b) presents an algorithm for L1�� norm approximation for discrete data and proves 
that it converges in a finite number of steps. A similar algorithm on L1�� norm approximation for 
continuous data is given by Usow (1967a). The Usow's algorithm is to descend on the convex 
polytope from vertex to vertex along connecting edges of the polytope in such a way that certain 
intermediate vertices are by-passed. This descent continues until the lowest vertex is reached. (see 
also, Abdelmalek (1974), Bidabad (1989a,b)). 

Relation of this algorithm with simplex method has been discussed by Abdelmalek (1974). He 
shows that Usow's algorithm is completely equivalent to a dual simplex algorithm applied to a linear 
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programming model with nonnegative bounded variables, and one iteration in the former is equivalent 
to one or more iterations in the latter. Bloomfield and Steiger (1980) devise an efficient algorithm 
based on the proposition of Usow explained above. 

Sharpe (1971) by applying the L1� � norm regression to portfolio and its rate of return, gives an 
algorithm for the two parameter linear regression model it must be possible to assign half of the points 
above and half below the regression line (see also Bidabad (1989a,b)). 

Rao and Srinivasan (1972) interpret Sharpe's procedure as the solution of parametric dual linear 
programming formulation of the problem. They give an alternate and about equally efficient 
procedure for solving the same problem. Brown (1980) gives a distinct but similar approach to those 
of Edgeworth (1923) and Sharpe (1971). He emphasizes on the median properties of the estimator. 
The similarity comes from graphical approach of the three authors. Kawara (1979) also develops a 
graphical method for the simple regression model. 

Bartels and Conn and Sinclair (1978) apply the method of Conn (1976) to the L1�� norm solution 
of overdetermined linear system. Their approach is minimization technique for piecewise 
differentiable functions (see also Bidabad (1989a,b)). This algorithm has also been modified for the 
case of degeneracy (see also, Bartels and Conn and Sinclair (1976)). Bartels and Conn (1977) showed 
that how L1�� norm, restricted L1� � norm, L∞ norm regressions and general linear programming can all be 
easily expressed as a piecewise linear minimization problem. By some simplifications this algorithm 
corresponds precisely to the algorithm proposed by Bartels and Conn and Sinclair (1978). The 
contribution of this paper is putting a wide class of problems in the mould of two algorithms 
mentioned above. The techniques are easily extended to the models with norm restrictions (see also 
Bidabad (1989a,b)). 

Bloomfield and Steiger (1980) proposed a descent method for the L1�� norm multiple regression. 
Their algorithm is also explained in Bloomfield and Steiger (1983). In some steps this algorithm is 
related to that of Singleton (1940) and Usow (1967b). The basis of this method is to search for a set of 
m observations which locate on the optimal L1�� norm regression. This set is found iteratively by 
successive improvement. In each iteration one point from the current set is identified as a good 
prospect for deletion. This point is then replaced by the best alternative. The novel features of this 
method are in an efficient procedure for finding the optimal replacement and a heuristic method for 
identifying the point to be deleted from the pivot (see also Bidabad (1989a,b)). In this paper 
relationship of this algorithm to linear programming is also discussed. 

Seneta and Steiger (1984) proposed an algorithm for L1�� norm solution of slightly 
overdetermined system of equations. Their proposition is based on the above algorithm of Bloomfield 
and Steiger. It is more efficient than the former if m is near n. 

Seneta (1983) reviews the iterative use of weighted median to estimate the parameters vector in 
the classical linear model when the fitting criterion is L1�� norm and also Cauchy criterion. 

Wesolowsky (1981) presents an algorithm for multiple L1�� norm regression based on the notion 
of edge descent along the polyhedron of the objective function (see also Bidabad (1989a,b)). This 
algorithm is closely related to those of Rhodes (1930) and Bartels and Conn and Sinclair (1978) 
which explained before. Consider the multiple linear regression as before. In this paper Wesolowsky 
also discusses the problem of multicolinearity and gives an appropriate solution. 

Josvanger and Sposito (1983) modify Wesolowsky's algorithm for the two parameter simple 
linear regression model. The modification is an alternative way to order observations instead of 
sorting all of them to find the necessary weighted median value. Suppose the problem has been 
reduced to a weighted median problem. They place smaller values of factors to be sorted with 
corresponding weights below the current solution point and larger or equal values above it, then 
recheck the inequalities (16) of weighted median. If the inequalities do not satisfy then an appropriate 
adjustment is made. In particular, if the right hand side is overly weighted, then the weight 
corresponding to the smallest sorting factor is transferred to the left hand side, and the check is made 
again. A computer program for this algorithm is also given by the authors. 

"Generalized gradient" method introduced by Clarke (see, Clarke (1983)) is a general procedure 
for non-smooth optimization functions and problems (see, Osborne and Pruess and Womersley 
(1986)). A subclass of this method is called "reduced gradient" explained by Osborne (1985) is a 
general algorithm which contains linear programming, piecewise linear optimization problems and 
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polyhedral convex function optimization algorithms inside. The reduced gradient algorithm is a 
special case of descent method which possesses two important characteristics. Identify direction and 
taking a step in this direction to reduce the function value (see also, Anderson and Osborne (1975), 
Osborne and Watson (1985) Osborne (1985,87)). The algorithms of Bartels and Conn and Sinclair 
(1978), Armstrong and Frome and Kung (1979), Bloomfield and Steiger (1980) are all special cases 
of reduced gradient method. 

Imai and Kato and Yamamoto (1987) present a linear time algorithm for computing the two 
parameter L1�� norm linear regression by applying the pruning technique. Since the optimal solution in 
the a0xa1 plane lies at the intersection of data lines, so, at each step a set of data lines which does not 
determine the optimum solution are discarded. In this paper algebraic explanation of the problem is 
also offered. 

Pilibossian (1987) also gives an algorithm similar to Karst (1958) for the simple two parameter 
linear L1�� norm regression. 

Bidabad (1987a,b,88a,b) proposed a descent methods for the simple and multiple L1�� norm 
regressions. These algorithms with many improvements discussed by Bidabad (1989a,b). Since the 
algebraic closed form of the L1�� norm estimator has not been derived yet, he tried to give some insight 
to this problem by applying discrete differentiation technique to differentiate the L1�� norm objective 
function. This differentiation on discrete domain variables accompanying with regular differentiation 
on variables with continuous domains increases our knowledge on the algebraic closed form of the 
problem. In order to improve the accuracy, speed and generally the efficiency of computation of the 
L1�� norm estimator, he proposed four algorithms which two of them are for simple and others two are 
for multiple regression models. By inspecting the properties of proposed algorithms, many 
characteristics of the solution space are clarified. In Bidabad (1989a,b) to find the minimum of the L1� �
norm objective function of the regression, m-1 points on the polyhedron of the objective function are 
selected and from this set the mth point is found by descending in steepest direction. Delete an 
appropriate point and enter the last mth point for next descending step. The procedure is continued 
until the global minimum is reached. Although, most of the descent methods use a similar procedure, 
the steps are well organized and modified for the special shape of the L1�� norm objective function. In 
this paper the new convergence theorems related to the proposed algorithms are proved and their 
properties are discussed. 

 
5.2 Simplex type algorithms 

The essence of linear programming in solving L1�� norm problem may be found in the work of 
Edgeworth (1888). Harris (1950) suggested that the L1�� norm estimation problem is connected with 
linear programming. Charnes and Cooper and Ferguson (1955) formulated the problem as linear 
programming model. This article is the first known to use linear programming for this case. 
Adaptation of linear programming to L1� � norm estimation problem is shown below, 

min: 1nT(w+v)
ß

s.to: Xß+In(w-v)=y (17) 
w,v≥0
ß unrestricted in sign 

Where 1n is a vector of size nx1 of 1's and In is a nth order identity matrix. The vectors v and w are of 
size nx1 and their elements may be interpreted as vertical deviations above and below the fitted 
regression hyperplane respectively. This problem has n equality constraints in m+2n variables. When 
n is large, this formulation generally requires a large amount of storage and computation time. 
Wagner (1959) shows that the formulation of the L1�� norm regression may be reduced to m equality 
constraints linear programming problem. Thus, this dual formulation reduces n equations of primal 
form to m equations of dual form and considerably reduces the storage and computation time. 

Fisher (1961) reviews the formulation of the L1�� norm estimation in relation with primal form of 
linear programming. Barrodale and Young (1966) developed a modified simplex algorithm for 
determining the best fitting function to a set of discrete data under the L1�� norm criterion. The method 
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is given as Algol codes (for critics see, McCormick and Sposito (1975)). Davies (1967) demonstrates 
the use of the L1�� norm regression estimates. Rabinowitz (1968) also discusses the application of linear 
programming in this field. Crocker (1969) cautions against using the L1�� norm criterion merely to 
restrain unwanted negative coefficient estimates which occur in least squares regression. 
Multicolinearity is one of the cases which causes this result. Robers and Ben-Israel (1969) by using 
interval linear programming, proposed an algorithm to solve the L1�� norm estimation problem. 
Rabinowitz (1970), Shanno and Weil (1970) discuss some connections between linear programming 
and approximation problem. Barrodale (1970) summarizes the linear and nonlinear L1�� norm curve 
fitting on both continuous and discrete data. Spyropoulos and Kiountouzis and Young (1973) suggest 
two algorithms for fitting general functions and particularly fast algorithm with minimum storage 
requirements for fitting polynomials based on the algebraic properties of linear programming 
formulation. Robers and Robers (1973) have supplied a special version of the general method of 
Robers and Ben-Israel (1969) which is designed specifically for the L1�� norm problem. A Fortran code 
is also provided. 

Barrodale and Roberts (1973) present a modification of simplex method which needs smaller 
amount of storage and by skipping over simplex vertices is more efficient than usual simplex 
procedure. Define the vector ß as a difference of two nonnegative vectors c and d, their formulation 
can be stated as follows, 

min: 1nT(w+a)
c,d
s.to: X(c-d)+In(w-v)=y (18) 

w,v,c,d≥0
Because of the relationships among variables, computation can be performed by using only 

(n+2)x(m+2) amount of array storage, including labels for the basic and non-basic vectors. An initial 
basis is given by w if all yi are nonnegative. If a yi is negative, sign of the corresponding row is 
changed and the unit column from the corresponding element of v is taken as part of the basis. The 
algorithm is implemented in two stages. First stage restricts the choice of pivotal column during the 
first m iterations to the vectors elements cj and dj recording to the associated maximum nonnegative 
marginal costs. The vector that leaves the basis causes the maximum decrease in the objective 
function. Thus the pivot element is not necessarily the same as in the usual simplex. Second stage 
involves interchanging non basic wi or vi with the basic wi or vi. The basic vectors corresponding to 
cj and dj are not allowed to leave the basis. The algorithm terminates when all marginal costs are non-
positive (see, Kennedy and Gentle (1980)). A Fortran code for this procedure is given by Barrodale 
and Roberts (1974). Peters and Willms (1983) give algorithms accompanying with computer codes for 
up-and-down dating the solution of the problem when a column or row inserted to or deleted from X,
or y is changed. These algorithms are all based on Barrodale and Roberts (1973,74) procedure. 

Abdelmalek (1974) describes a dual simplex algorithm for the L1�� norm problem with no use of 
artificial variables. For this algorithm, the Haar condition (see, Osborne (1985), Moroney (1961)) 
need not be satisfied anymore. This algorithm seemed to be very efficient at the time of publication. 
An improved dual simplex algorithm for L1�� norm approximation is proposed by Abdelmalek (1975a). 
In this algorithm, certain intermediate iterations are skipped and in the case of ill-conditioned 
problems, the basis matrix can lend itself to triangular factorization and thus ensure stable solution. 
Abdelmalek (1980a) improves his previous algorithm by using triangular decomposition. A Fortran 
translation of the algorithm is given by Abdelmalek (1980b). Sposito and McCormick and Kennedy 
(1978) summarizes much of the works on L1�� norm estimation including problem statement, linear 
programming formulation, efficient computational algorithms and properties of the estimators. 

Armstrong and Kung (1978) propose an algorithm for simple two parameter L1�� norm 
regression. The method is a specification of linear programming of Barrodale and Roberts (1973) 
algorithm. A Fortran code is given too. 

Armstrong and Frome and Kung (1979) use LU (Lower-Upper triangular) decomposition of 
Bartels and Golub (1969) in maintaining the current basis on revised simplex procedure. A Fortran 
translation is also enclosed. Armstrong and Godfrey (1979) show that the primal method of Barrodale 
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and Roberts (1973) and dual method of Abdelmalek (1975) are essentially equivalent. With a given 
initial basis for the two methods, they show that, both algorithms will generate corresponding bases at 
each iteration. The only difference is the choice of initial basis and heuristic rules for breaking ties. 
Armstrong and Kung (1982b) presents a dual linear programming formulation for the problem. 
Various basis entry and initialization procedures are considered. It has been shown that the dual 
approach is superior to primal one if a good dual feasible solution is readily available (see also, 
Steiger (1980)). Banks and Taylor (1980) suggest a modification of Barrodale and Roberts (1973) 
algorithm. The objective function is altered to include magnitudes of the elements of the both errors 
and solution vectors. For a general discussion on simplex for piecewise linear programming see 
Fourer (1985a,b) and for a survey of the corresponding problem on the L1�� norm see Fourer (1986). 
Narula and Wellington (1987) propose an efficient linear programming algorithm to solve the both L1� �
and L∞� norms linear multiple regressions. The algorithm exploits the special structure and similarities 
between the two problems. 

Brennan and Seiford (1987) develop a geometrical interpretation of linear programming in L1� �
norm regression. They give a geometric insight into the solving process in the space of observations. 
McConnell (1987) shows how the method of vanishing Jacobians which has been used to optimize 
quadratic programming problems can also be used to solve the special linear programming problem 
associated with computing linear discrete L1�� norm approximation. For the possibility of applying 
other types of linear programming solutions such as Karmarkar solution to L1�� norm problem see 
Meketon (1986). 

 
5.3 Other algorithms 

This category consists of algorithms which were not classified in the two last sections. 
Rice (1964c) applies the bisection method to L1�� norm regression. In this method at each step the 

domain of S is broken to two segments and the appropriate segment is selected for the next iteration. 
Solution is reached when the last segment is less than a predetermined small value (see, Bidabad 
(1989) for discussing bisection method). 

Abdelmalek (1971) develops an algorithm for fitting functions to discrete data points and 
solving overdetermined system of linear equations. The procedure is based on determining L1�� norm 
solution as the limiting case of Lp norm approximation when p tends to one from right in limit. This 
technique thus obtains a solution to a linear problem by solving a sequence of nonlinear problems. 

Schlossmacher (1973) computed the L1�� norm estimates of regression parameters by an iterative 
weighted least squares procedure. Instead of minimizing sum of absolute deviations he minimized 
sum of weighted squared errors with 1/│ui│ as weights. Once least squares is applied to the problem 
and residuals are computed. The absolute value of the inverse of the residuals are again used as 
corresponding weights in the next iteration for minimizing the sum of weighted squared errors (see 
also, Holland and Welsh (1977)). Fair (1974) observed that the estimated values of ß did not change 
after the second or third iterations. In cases where any residual is zero, continuation of procedure is 
impossible, because the corresponding weight to this residual is infinite. This problem is also 
discussed by Sposito and Kennedy and Gentle (1977), Soliman and Christensen and Rouhi (1988). 
Absolute convergence of this algorithm has not been proved, but non-convergent experiment has not 
been reported. 

Soliman and Christensen and Rouhi (1988) used left pseudoinverse (see, Dhrymes (1978) for 
description of this inverse) to solve the general linear L1�� norm regression. According to this procedure 
one should calculate the least squares solution using the left pseudo-inverse or least squares 
approximation. Calculate the residual vector. Select the m observations with the smallest absolute 
values of the residuals and partition the matrices as the selected observations locate on the top and 
solve ß for the top partitions. Although this procedure is operationally simple, its solution is not the 
same as other exact methods and no proof is presented to show that the solution is in the 
neighborhood of the exact solution of the L1�� norm minimization problem. 

Application of median polish (see, Tukey (1977)) and n-median polish to L1�� norm estimation 
are discussed and developed by Bloomfield and Steiger (1983), Kemperman (1984), Sposito (1987a), 
Bradu (1987a,b). 
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Application of Karmarkar's algorithm for linear programming and its relation to L1�� norm is 
given by Sherali and Skarpness and Kim (1987). For using homotopy method in L1�� norm see Garcia 
and Gould (1983), Schellhorn (1987). An algorithm for linear L1�� norm approximation for continuous 
function is given by Watson (1981), (see also, Baboolal and Watson (1981)). 

 
5.4 Initial value problem 

 It is discussed by many authors how the algorithms should be started. Selection of initial 
value is an important factor in the execution time of various algorithms. On the other hand, a good 
starting point leads to the solution faster and reduces number of iterations. There are several papers 
which consider the problem for the L1�� norm minimization algorithms. Duris and Sreedharan (1968) 
briefly refers to this problem. McCormick and Sposito (1976) used the least squares estimator to 
construct an starting point for the algorithm of Barrodale and Roberts (1973). This initial value 
reduced the number of iterations in most cases. Sposito and Hand and McCormick (1977) show that 
the total CPU time needed to obtain optimal regression coefficients under the L1�� norm can generally 
be reduced if one first computes a near-best L1�� norm estimator such as least squares and then solve the 
modified procedure of Barrodale and Roberts (1973). A similar discussion about L∞� norm estimation 
is given by Hand and Sposito (1980). Sklar and Armstrong (1982) demonstrate that utilizing the least 
squares residuals to provide an advanced start for the algorithm of Armstrong and Frome and Kung 
(1978) results in a significant reduction in computational effort. 

 
5.5 Computer programs and packages 

Although many authors have coded the computer programs for their own algorithms, which 
were referenced before, there are also other packages which solve the L1�� norm regression problem and 
compute the necessary statistics. Some of these packages are IMSL (see, Rice (1985)); BLINWDR 
(see, Dutter (1987)); ROBETH and ROBSYS (see, Marazzi (1987), Marazzi and Randriamiharisoa 
(1985)) and XploRe (see, Hardle (1987)). Since these softwares have their own special characteristics 
we do not go through the details of them. The interested reader may consult the references. 

 
5.6 Comparison of the algorikhms 

Generally, the comparison of algorithms is not a straightforward task. As it is indicated by 
Dutter (1977), factors such as quality of computer codes and computing environment should be 
considered. In the case of the L1�� norm algorithms, three specific factors of number of observations, 
number of parameters and the condition of data are more important. Kennedy and Gentle and Sposito 
(1977a,b), and Hoffman and Shier (1980a,b) describe methods for generating random test data with 
known L1�� norm solution vectors. Gilsinn et al (1977) discuss a general methodology for comparing 
the L1�� norm algorithms. 

 
Table 1. Summary of the characteristics of the existing algorithms. 

Ref. Compared with m 
range 

n range Time performances 

BCS BR 2-8 201 roughly equal speed 
AFK BR 5-20 100-1500 30%-50% AFK is faster 
A BR 1-11 15-203 nearly equal speed 
BS BR 2-6 100-1800 BS is faster for larger n 
W AFK, AK 2-25 100-1800 W is faster for larger n, smaller m 
SS BS 4-34 10-50 SS is faster for m near n 
B4 AFK, BS, BR 3-10 20-10000 B4 is faster and more accurate; 

AFK and BS failed in large samples 
AK S 2 50-500 AK is faster 
JS AK 2 10-250 JS is faster 
B2 JS 2 20-10000 B2 is faster 

n number of observations. 
m number of parameters. 
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BCS    Bartels,Conn,Sinclair (1978). 
BR       Barrodale,Roberts (1973,74). 
AK      Armstrong,Kung (1978). 
S Sadovski (1974). 
AFK   Armstrong,Frome,Kung (1979). 
A Abdelmalek (1980a,b). 

BS      Bloomfield,Steiger (1980). 
W Wesolowsky (1981). 
JS       Josvanger,Sposito (1983). 
SS       Seneta,Steiger (1984). 
B2      Bidabad (1989a,b), algorithm 2. 
B4      Bidabad (1989a,b), algorithm 4. 

 
Kennedy and Gentle (1977) examine the rounding error of L1�� norm regression and present two 

techniques for detecting inaccuracies of the computation (see also, Larson and Sameh (1980)). 
Many authors have compared their own algorithms with those already proposed. Table 1 gives 

a summary of the characteristics of the algorithms proposed by different authors. It is important to 
note that since the computing environment and condition of data with respect to distribution of the 
regression errors of the presented algorithms by table 1 are not the same, definitive conclusion and 
comparison should not be drawn from this table. 

Armstrong and Frome (1976a) compare the iterative weighted least squares of Schlossmacher 
(1973) with Barrodale and Roberts (1973) algorithm. The result was high superiority of the latter. 
Anderson and Steiger (1980) compare the algorithms of Bloomfield and Steiger (1980), Bartels and 
Conn and Sinclair (1978) and Barrodale and Roberts (1973). It was concluded that as number of 
observations n increases the BR locates in a different complexity class than BCS and BS. All 
algorithms are linear in number of parameters m, and BS is less complex than BCS. Complexities of 
BS and BCS are linear in n. There is a slight tendency for all algorithms to work proportionately 
harder for even m than for odd m. BR and BS had the most difficulty with normal error distribution 
and the least difficulty with Pareto distribution with corresponding Pareto density parameter equal to 
1.2. 
 Gentle and Narula and Sposito (1987) performs a rather complete comparison among some of 
the L1�� norm algorithms. They limited this comparison to the codes that are openly available for L1� �
norm linear regression of unconstrained form. Table 2 shows the required array storage and stopping 
constants of the corresponding algorithms and the algorithms of Bidabad (1989a,b). Table 2. Array 
storage requirement for selected algorithms. 

 
Table 2. Array stqrage requirement for selected algrrithms. 

Program name Ref. Required array storage Stopping constants 
L1 BR 3n+m(n+5)+4 BIG=1.0E+75 

TOLER=10**(-D+2/3) 
D=No.of decimal digits of accuracy 

L1 A 6n+m(n+3m/2+15/2) PREC=1.0E-6 
ESP=1.0E-4 

L1NORM AFK 6n+m(n+m+5) ACU=1.0E-6 
BEG=1.0E+15 

BLAD1 BS 4n+2m(n+2) ----------------- 
BL1 B4 2n+m(3n+m+2)-2 ----------------- 
LONESL S 4n PREC=1.0E-6 

BIG=1.0E+19 
SIMLP AK 4n ACU=1.0E-6 

BIG=1.0E+19 
DESL1 JS 5n TOL=1.0E-6 
BL1S B2 5n ----------------- 

See table 1 for abbreviations. 
Sources: Gentle, Narula, Sposito (1987), Bidabad (1989a,b). 

 
They concluded that BS program performs quite well on smaller problems but in larger cases, 

because of accumulated round-off error it fails to produce correct answers. Increasing the precision of 
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the coded program to avoid rounding error increases the execution time, so it is not clear what would 
happen to the relative efficiency of BS after modification. 

The Wesolowsky program was not usable and deleted in their study. Because of superiority of 
AFK to BR and AK to S which had been indicated in previous studies, BR and S algorithm did not 
enter in their study. Gentle and Sposito and Narula (1988) also compare the algorithms for 
unconstrained L1� � norm simple linear regression. This investigation is essentially an extraction of 
Gentle and Narula and Sposito (1987). The attained results are completely similar. 

Bidabad (1989a,b) compare the algorithm B2 with JS and B4 with the algorithms of AFK, BS 
and BR. He concludes that B2 is faster than JS and B4 is faster for smaller m and accurate for larger 
n. He also observed the failure of AFK and BS for larger problems. 

 
5.7 Nonlinear form computational methods 
 Suppose again y, X, u and ß are defined as before. In nonlinear L1�� norm regression, the problem 
is to estimate ß vector in the nonlinear model, 

yi = fi(xi,ß) + ui i=1,...,n; n≥m (19) 

Where fi is the response function and xi is the ith row of X. L1�� norm regression parameters are 
derived by minimizing the following sum: 

 n 
min: Σ │yi - fi(xi,ß)│ (20) 

ß i=1 
The function (20) can be reformulated as a nonlinear programming problem as, 

 n 
min: Σ wi

ß i=1 
s.to: yi - fi(xi,ß) - wi ≤ 0

-yi + fi(xi,ß) - wi ≤ 0 (21) 
wi ≥ 0
i=1,...,n 

Over the last three decades numerous algorithms have been proposed for solving the nonlinear 
L1�� norm regression problem. These methods can be classified into the following three main categories 
(see, Gonin and Money (1987b); for another categorization see Watson (1986), McLean and Watson 
(1980)). 

The first category consists of the methods using only first order derivative. In these algorithms 
the original nonlinear problem is reduced to a sequence of linear L1�� norm problems, which each of 
them can be solved efficiently by standard linear programming procedures. These methods are of the 
Gauss-Newton type. The main algorithms which fall into this category have been presented by authors 
like Osborne and Watson (1971), Anderson and Osborne (1977a,b), Shrager and Hill (1980), McLean 
and Watson (1980), Jittorntrum and Osborne (1980), Osborne (1980), Watson (1980,84a), Bartels and 
Conn (1982), Hald and Madsen (1985). 

The second category consists of methods which by using second order derivative, transform the 
original problem into a sequence of unconstrained minimization problems. The non differentiability 
of the objective function is then overcome. This procedure is known as the penalty function method of 
nonlinear programming. The contributors are El-attar and Vidyasagar and Dutta (1979), Fletcher 
(1981,84), Tishler and Zang (1982), Conn (1984), Conn and Gould (1987). 

In the last category the objective function is linearized but quadratic approximations are 
incorporated to take curvature effects into account (see, Murray and Overton (1981), Overton (1982), 
Bartels and Conn (1982)). 
 Other characteristics of nonlinear L1�� norm problem are discussed by Rice (1964a,b), Osborne 
and Watson (1978), Charalambous (1979), Glashoff and Schultz (1979), Hald (1981a,b), Wagner 
(1982), Watson (1982,87), Powell and Yuan (1984). 
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5.8 Lp norm computation 
Suppose our linear regression model of the form discussed before. The Lp norm estimation of 

ß may be found by minimizing sum of the pth power of the absolute values of the errors. That is, 
 n         m 

min: Σ │yi - Σ ßjxij│p (22) 
ß i=1       j=1 

The above problem can be reformulated as a mathematical programming problem. Rewrite the error 
vector as difference of two nonnegative vectors w and v which present positive and negative 
deviations respectively. That is u=w-v; w,v≥0. The Lp norm approximation problem reduces as 
follows (see, Kiountouzis (1972)), 

 n 
min: Σ (wip+vip)

ß i=1 
m

s.to: wi - vi + Σ ßjxij = yi
j=1                                                                                                                 (23) 

wi,vi ≥ 0
ßj unrestricted in sign 
i=1,...,n; j=1,...,m 

It should be noted that this formulation is extremely flexible as it allows that any other constraint to 
be added (see, Money and Affleck-Graves and Hart (1978)). Another nice specification is that we can 
change the model to nonlinear form by removing the summation term in the first n constraints and 
inserting fi(xi,ß) instead. That is, 

 n 
min: Σ (wip + vip)

ß i=1 
s.to: wi - vi + fi(xi,ß) = yi (24) 

wi,vi ≥ 0
ßj unrestricted in sign 
i=1,...,n; j=1,...,m 

The resultant is the formulation of nonlinear Lp norm estimation problem. 
For general Lp norm regression, there exist various computational methods for linear as well as 

nonlinear models (for details of the discussion, interested readers may see, Descloux (1963), Rice 
(1964,69), Barrodale and Young (1966), Sreedharan (1969,71), Ekblom and Henriksson (1969), 
Karlovitz (1970a,b), Barrodale and Roberts (1970), Barrodale and Roberts and Hunt (1970), Fletcher 
and Grant and Hebden (1971,74b), Kiountouzis (1972), Forsythe (1972), Kahng (1972), Ekblom 
(1973a,b), Anton and Duris (1973), Watson (1973,77,78,84b,85a), Shisha (1974), Merle and Spath 
(1974), Oettli (1975), Rey (1975), Mond and Schechter (1976), Borowsky (1976), Shier and Witzgall 
(1978), Kennedy and Gentle (1978), Wolfe (1979), Porter and Winstanley (1979), Barr and Affleck-
Graves and Money and Hart (1980a), Harter (1981), Madsen (1985), Gonin and du Toit (1987), 
Fichet (1987b)). 

In the case of L∞� norm solution of overdetermined system of equations, there are similar 
methods as well (for more information, interested readers may see the following selected articles and 
also their references, Kelley (1958), Goldstein and Cheney (1958), Cheney and Goldstein (1958), 
Stiefel (1960), Veidinger (1960), Valentine and Van Dine (1963), Aoki (1965), Osborne and Watson 
(1967), Bartels and Golub (1968a,b), Gustafson and Kortanek and Rom (1970), Barrodale and Powell 
and Roberts (1972), Cline (1972,76), Duris and Temple (1973), Watson (1973), Barrodale and 
Phillips (1974,75), Boggs (1974), Fletcher and Grant and Hebden (1974a), Madsen (1975), 
Abdelmalek (1975b,76,77a,b), Conn (1975), Coleman (1978), Charalambous and Conn (1978), 
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Bartels and Conn and Charalambous (1978), Armstrong and Kung (1979), Klingman and Mote 
(1982), Bartels and Conn and Li (1987), Brannigan and Gustafson (1987)). 

 
6. Simultaneous equations system

The L1�� norm estimation has been extensively studied for single equation regression model and 
its properties are well recognized. But despite of the wide variety of econometric applications of L1� �
norm estimation to simultaneous equation systems, there have been only few investigators in this area 
which their works are summarized in this section. Suppose the following equation as a first equation 
of a structural system, 
 ┌ θ ┐

y = Yθ + X1ß + u = [Y|X1]│---│ + u ≡ Zα + u (25) 
 └ ß ┘
Where y is a vector of dependent endogenous, Y, matrix of independent endogenous, X1, matrix of 
exogenous variables; θ and ß are vectors of regression parameters and u is random error vector. The 
reduced form for Y is given by, 

Y = XΠ + v (26) 
Direct and indirect least absolute deviations (DLAD, IDLAD) analogues of direct and indirect least 
squares (DLS, IDLS) may be applied to the systems (25) and (26) respectively. The L1�� norm objective 
function analogue of two stage least squares (2SLS) for estimation of α may be defined as, 

 n 
min: Σ │yi - PiTZα│ (27) 
α i=1 

Where yi is the ith element of y, PiT is the ith row of P=(XTX)-1XT (see, Fair (1974)). Amemiya 
(1982) by comparing the problem (27) with Theil's interpretation of 2SLS, 

 n 
min: Σ (yi - PiTZα)2 (28) 
α i=1 

and interpretation of 2SLS as the instrumental variables estimator, namely, the minimization of, 
 n

min: Σ (PiTy - PiTZα)2 (29) 
α i=1 

defines two stage least absolute deviations (2SLAD) as, 
 n 

miy: Σ │PiTy - PiTZα│ (30) 
α i=1 

Amemiya (1982) combines the two ideas and proposes 2SLAD as a class of estimators obtained by 
minimizing, 

 n  
min: Σ │qfi + (1-q)PiTy - PiTZα│ (31) 
α i=1 

Where, q is a parameter to be determined by researcher. When q=0, problem (31) is equivalent to (30) 
and yields the estimator which is asymptotically equivalent to 2SLS. When q=1 then (31) is 
equivalent to (27). For any value of qε[0,∞) Amemiya (1982) proves the strong consistency of 
2SLAD and gives its asymptotic variance under three different cases of normal, partially normal and 
non normal distribution of u and v. Powell (1983) demonstrates the asymptotic normality of Amemiya 
(1982) proposed estimators for more general distributions of error terms. 

Amemiya (1982) also proposes another alternative LAD analogue of 2SLS. Once IDLAD is 
applied to each equation of reduced form and Π^ is computed. Then by minimizing the following 
expression, 
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n
min: Σ │yi -XiTΠ^θ - X1iTß│ (32) 

ß i=1 
θ^ and ß^ are derived. He calls this estimator double two stage least absolute deviations (D2SLAD). 
A similar discussion for different values of q has also been done. Powell (1983) shows an asymptotic 
equivalence proposition for the sub-class of D2SLAD estimators. This result is analogous to the finite 
sample equivalence of Theil's interpretation of 2SLS, and its instrumental variable interpretation. 

Glahe and Hunt (1970) as pioneers of introducing L1�� norm in simultaneous system of equations, 
compare small sample properties of least absolutes and least squares estimators for an overidentified 
simultaneous system of two equations via Monte Carlo experiments. Estimators where used are 
DLAD, DLS, IDLAD, IDLS, 2SLAD and 2SLS. All comparisons were done for all three pairs of 
direct, indirect and two stage least absolute and least squares estimators for different sample sizes of 
ten and twenty with considering various cases of multicolinearity, heteroskedasticity and 
misspecification. They concluded that the L1�� norm estimators should prove equal or superior to the L2

norm estimators for models using a structure similar to that of their study, with very small sample 
sizes and randomly distributed errors. 

The same structure is used by Hunt and Dowling and Glahe (1974) with Laplace and normal 
error distributions. The estimators in their study are DLAD, DLS, 2SLAD and 2SLS. They concluded 
that the L1�� norm estimators provided 100% of the best results in the case of Laplace distribution, and 
37.5% of the best results in the case of normal distribution of errors. 

Nyquist and Westlund (1977) performs a similar study with an overidentified three equations 
simultaneous system with error terms obeying symmetric stable distributions. The estimators used in 
this study were similar to those of Glahe and Hunt (1970) mentioned above. They concluded that with 
normal distribution, L2 norm estimators are favorable. In non normal case L1�� norm estimators tend to 
perform better as the degree of non normality increases. When sample size increases, the relative 
performance of 2SLAD to DLS is increased too. In the normal distribution case 2SLS is the best, and 
for non normal distributions 2SLAD is the leading alternative closely followed by IDLAD and for 
extremely non normal cases IDLAD seems to be more robust than 2SLAD. 

 
7. Statistical aspects

Since, the L1� � norm criterion has discovered many interesting extension in statistics, this section 
has a glance at some of its features on the various fields of statistics. 
 
7.1 Sampling distribution 

Ashar and Wallace (1963), Rice and White (1964), Meyer and Glauber (1964), Glahe and Hunt 
(1970), Fama and Roll (1971), Smith and Hall (1972), Kiountouzis (1973), Brecht (1976), Ramsay 
(1977), Hill and Holland (1977), Rosenberg and Carlson (1977), Pfaffenberger and Dinkel (1978) 
have examined small sample properties of L1�� norm fitting via Monte Carlo method in different 
conditions. The relative efficiency of this estimator to least squares is occurred if errors distribution 
has big tails. 

Wilson (1978) concludes that L1�� norm estimator is 80% as efficient as least squares when errors 
follow contaminated normal distribution. When outliers are present, L1�� norm estimator becomes more 
efficient. His approach is Monte Carlo too and a wide variety of experiments are examined. 

Cogger (1979) performed ex-post comparisons between L1�� and L2 norms forecasts from Box-
Jenkins autoregressive time series models. The comparisons indicated that L1�� norm approaches to the 
estimation of ARIMA (integrated autoregression moving average) models of time series data should 
receive further attention in practice. 

For multivariate regression with a symmetric disturbance term distribution, Rosenberg and 
Carlson (1973) showed that the error in the L1�� norm estimation is approximately, normally distributed 
with mean zero and variance covariance matrix δ²(XTX)-1, where, δ²/n is the variance of the median 
of errors (see also, Sposito and Tvejte (1984), Ronner (1984)). They concluded that, the L1 �� norm 
estimates have smaller variance than least squares in regression with high kurtosis error distribution 
(see also, Bloomfield and Steiger (1983)). 
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Sielken and Hartley (1973), Farebrother (1985) have shown that when the errors follow a 
symmetric distribution, and the L1�� norm estimates may not be unique, the problem may be formulated 
in such a way as to yield unbiased estimators. A similar discussion for general Lp norm may be found 
in Sposito (1982). 

Bassett and Koenker (1978) showed that the L1�� norm estimates of regression parameters in 
general linear model are consistent and asymptotically Gaussian with covariance matrix δ²(XTX)-1,
where δ²/n is the asymptotic variance of the sample median from random samples of size n taken from 
the error distribution (see, Bassett and Koenker (1982), Koenker and Bassett (1984), Bloomfield and 
Steiger (1983), Oberhofer (1982), Wu (1988). A simple approximation method for computing the bias 
and skewness of the L1�� norm estimates is given by Withers (1987) which shows that bias and 
skewness of ß^ are proportional to the 3rd moments of independent variables. The moment problem in 
the L1�� norm is discussed by Hobby and Rice (1965). 

Dupacova (1987a,b) used the tools of nondifferentiable calculus and epi-convergence to find 
the asymptotic properties of restricted L1�� norm estimates. Asymptotic interesting properties of 
Boscovich's estimator which is L1� � norm minimization of errors subject to zero mean of residuals 
constraint may be found in Koenker and Bassett (1985). L1�� norm fit for censored regression (or 
censored "Tobit") models has been introduced by Powell (1984,86). Paarsch (1984) by Monte Carlo 
experiments showed that the Powell estimator is neither accurate nor stable. 

Gross and Steiger (1979) used an L1�� norm analogue of L2 norm estimator for the parameters of 
stationary, finite order autoregressions. This estimator has been shown to be strongly consistent. Their 
evidences are based on Monte Carlo experiments (see also, Bloomfield and Steiger (1983) for more 
discussions). 

 
7.2 Statistical inference 

The asymptotic distribution of the three L1�� norm statistics (Wald, likelihood ratio and Lagrange 
multiplier tests) of linear hypothesis for general linear model have been discussed in Koenker and 
Bassett (1982a). They derived the asymptotic distribution for a large class of distributions. It has been 
shown that these tests under mild regularity conditions on design and error distribution have the same 
limiting chi- square behavior. Comparison of these tests based on Monte Carlo experiments is given in 
Koenker (1987). Since the L1�� norm estimator asymptotically follows a normal distribution, 
Stangenhaus and Narula (1987) by using Monte Carlo method determined the sample size at which 
normal distribution approximation can be used to construct the confidence intervals and test of 
hypothesis on the parameters of the L1�� norm regression. Comparison methods for studentizing the 
sample median which can be extended to L1�� norm regression is discussed by McKean and Sheather 
(1984); and accordingly, testing and confidence intervals are compared by Sheather and McKean 
(1987). 

Two coefficients of determination for L1�� norm regression are given by McKean and Sievers 
(1987). A class of tests for heteroskedasticity based on the regression quantiles is given in Koenker 
and Bassett (1982b). More recent works on L1�� norm statistical inference and analysis of variance may 
be found in Armstrong et al (1977), Siegel (1983) Sheather (1986), McKean and Shrader (1987), 
Shrader and McKean (1987), Stangenhaus (1987), Brown and Hettmansperger (1987), Tracy and 
Khan (1987), Vajda (1987), Sheather (1987), Fedorov (1987). For other characterization see, Fichet 
(1987a), LeCalve (1987). 

 
7.3 Multivariate statistics 

In usual clustering method, Euclidian metric or distance as an appropriate real valued function 
for constructing dissimilarity criterion is used (see also, Bidabad (1983a)). Spath (1976) used L1� �
metric as a criterion for clustering problem. More modification and extension may be found in Spath 
(1987). Kaufman and Rousseeuw (1987) introduced an L1�� norm type alternative approach, used in k-
medoid method, that minimizes the average dissimilarity of the all objects of the data set to the 
nearest medoid. Trauwaert (1987) and Jajuga (1987) applied the L1�� metric in fuzzy clustering method 
of ISODATA (Iterative Self Organizing Data Analysis Technique (A)). Trauwaert (1987) showed that 
in the presence of outliers or data errors, L1�� metric has superiority over L2 distance. 
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An L1�� norm similar version of multidimensional scaling is presented by Heiser (1988) (see also, 
Critchley (1980)) and of correspondence analysis by Heiser (1987). Robust Lp norm discrimination 
analysis is discussed by Haussler (1984) and Watson (1985a). L1�� norm estimation of principal 
components considered by GaLpin and Hawkins (1987). 

 
7.4 Nonparametric density estimation 

L1�� norm has also been used in nonparametric statistics and density estimation. The procedure 
of density estimation is done via the Parzen kernel function. Abou-Jaoude (1976a,b,c), Devroye and 
Wagner (1979,80) give the conditions for the L1�� norm convergence of kernel density estimates. 
Devroye (1983,85) gives the complete characterization of the L1�� norm consistency of Parzen-
Rosenblatt density estimate. Devroye concludes that all types of the L1�� norm consistencies are 
equivalent. Gyorfi (1987) proves the L1�� norm consistency of kernel and histogram density estimates 
for uniformly and strong mixing samples. Devroye and Gyorfi (1985) give a complete explanation of 
the L1�� norm nonparametric density estimation. The central limit theorems of Lp norms for kernel 
estimators of density and their asymptotic normality in different conditions of unweighted and 
weighted Lp norm of naive estimators, and under random censorship are discussed in Csorgo and 
Horvath (1987,88), Horvath (1987), Csorgo and Gombay and Horvath (1987). Bandwidth selection in 
nonparametric regression estimation is shown by Marron (1987). Via an example he concludes that it 
is an smoothing problem. Welsh (1987) considers simple L1�� norm kernel estimator of the sparsity 
function and investigates its asymptotic properties. L1�� and L2 norms cross-validation criteria are 
studied for a wide class of kernel estimators by Rossi and Brunk (1987,88). Gyorfi and Van der 
Meulen (1987) investigate the density- free convergence properties of various estimators of Shannon 
entropy and prove their L1�� norm consistency. Munoz Perez and Fernandez Palacin (1987) consider the 
estimating of the quantile function by using Bernstein polynomials and examine its large sample 
behavior in the L1� � norm. For comparison of the L1�� and L2 norms estimators of Weibull parameters see 
Lawrence and Shier (1981) and for a nonparametric approach on quantile regression see Lejeune and 
Sarda (1988). 

 
7.5 Robust statistics 

One of the most important properties of the L1�� norm methods is resistivity to outliers or wild 
points. This property makes it one of the most important techniques of robust statistics. Huber (1987) 
pointed out that the L1�� norm method serves in two main areas of robust estimation. Sample median 
plays an important role in robust statistics. The sample median is the simplest example of an estimate 
derived by minimizing the L1�� norm of deviations. Thus, L1�� norm minimizes the maximum asymptotic 
bias that can be caused by asymmetric contamination. Therefore, it is the robust estimate of choice in 
cases where it is more important to control bias than variance of the estimate. Next, the L1 �� norm 
method is the simplest existing high-breakdown estimator. Thus it can be a good starting point for 
iterative estimators which give nonsense solution if they started with a bad initial point and since it is 
resistant to outliers, may be used as an starting point for trimming the wild points (see also, Taylor 
(1974), Holland and Welsch (1977), Harvey (1977,78), Armstrong and Frome and Sklar (1980), 
Antoch et al (1986), Antoch (1987), Portnoy (1987), Bassett (1988b)). This technique for polynomial 
regression with a test about the degree of polynomial and for regression quantiles is considered in 
Jureckova (1983,84), Jureckova and Sen (1984). The same thing for nonlinear regression is devised 
by Prochazka (1988). Ronchetti (1987) reviews the basic concepts of robust statistics based on 
influence function and also in relation with L1�� norm (see also GaLpin (1986)). For computational 
algorithms in bounded influence regression see Marazzi (1988). Ekblom (1974) discusses the 
statistical goodness of different methods when applied to regression problem via Monte Carlo 
experiments and in Ekblom (1987) he shows the relationship of L1�� norm estimate as limiting case of 
an Lp norm or Huber estimates. Haussler (1984) and Watson (1985a) considered the robust Lp norm 
discrimination analysis problem. Robust estimates of principal components (see, Bidabad (1983c)) 
based on the L1� � norm formulation are discussed by GaLpin and Hawkins (1987). The asymptotic 
distributional risk properties of pre-test and shrinkage L1�� norm estimators are considered by Saleh and 
Sen (1987). L1�� norm estimator is also a member of M and R estimators (see, Bloomfield and Steiger 
(1983) for more discussions). 
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8. Application
L1�� norm methods has been extensively developed in various fields of sciences and work as 

strong analytical tools in analyzing human and natural phenomena. Many branches of sciences in 
applied mathematics, statistics and data analysis like econometrics, biometrics, psychometrics, 
sociometrics, technometrics, operation research, management, physic, chemistry, astronomy, 
medicine, industry, engineering, geography and so forth are heavily dependent to this method. 

The assumption of normally distributed errors does not always hold for economic variables as 
well as other data and variables and so we are not confronted with finite variance anywhere. An 
infinite variance means thick tail errors distribution with a lot of outliers. Since least squares gives a 
lot of weights to outliers, it becomes extremely sample dependent. Thus in this case least squares 
becomes a poor estimator. Of course, the observed distributions of economic or social variables will 
never display infinite variances. However, as discussed by Mandelbrot (1961,63) and herein before, 
the important issue is not that the second moment of the distribution is actually infinite, but the 
interdecile range in relation to the interquartile range is sufficiently large that one is justified in acting 
as though the variance is infinite. Thus, in this context, an estimator which gives relatively little 
weight to outliers, such as L1�� norm estimator is clearly preferred. 

Distribution of personal income has been known to have this characteristic since the time of 
Pareto -1896. Ganger and Orr (1972) give some evidences on time series characteristics of economic 
variables which have this property. Many other economic variables such as security returns, 
speculative prices, stock and commodity prices, employment, asset sizes of business firms, demand 
equations, interest rate, treasury cash flows, insurance and price expectations all fall in the category of 
infinite variance error distribution (see, Goldfeld and Quandt (1981), Nyquist and Westlund (1977), 
Fama (1965), Sharpe (1971)). 

Arrow and Hoffenberg (1959) used L1�� norm in the context of interindustry demand. Meyer and 
Glauber (1964) compare L1� � and L2 norms directly. They estimated their investment models on a 
sample by both estimators and then examined them by forecasting ex-post sample. They concluded 
that, with very few exceptions, the L1�� norm estimation outperformed the L2 norm estimators, even 
with criteria such as sum of the squared forecast errors which least squares is ordinarily thought to be 
minimal. Sharpe (1971) compares L1�� and L2 norms estimators for securities and portfolios. A similar 
discussion has been given by Cornell and Dietrich (1978) on capital budgeting. Affleck-Graves and 
Money and Carter ( ) did the same research by applying Lp norm and with emphasis on factors 
affecting the estimation of coefficients of an individual security model. Kaergard (1987) compares L1��,
L2 and L∞� norms estimators for Danish investments via their power to predict the even years from 
estimation over odd years for a long period. Hattenschwiler (1988) uses goal programming technique 
in relation with L1� � norm smoothing functions on several large disaggregate linear programming 
models for Switzerland food security policy (see, Bidabad (1984a) for description of goal 
programming relevance). Other applications of the L1�� norm smoothing functions on the models for 
planning alimentary self-sufficiency, food rationing and flux- and balancing model for feeding stuffs 
are referenced by Hattenschwiler (1988). 

Wilson (1979) used L1� � norm regression for statistical cost estimation in a transport context. 
Chisman (1966) used L1�� norm estimator to determine standard times for jobs in which work-elements 
are essentially the same for all jobs except that the quality of each type of the work-element used may 
vary among jobs. Frome and Armstrong (1977) refer to this estimator for estimating the trend-cycle 
component of an economic time series. 

Charnes and Cooper and Ferguson (1955) give optimal estimation of executive compensation of 
employees by solving L1�� norm problem via the technique of linear programming. Application of the 
L1�� norm in location theory is of special interest; because by this metric the rectangular distance of two 
points in two dimensional Cartesian coordinates can be considered very well (see, Cabot et al (1970), 
Wesolowsky and Love (1971,72), Drezner and Wesolowsky (1978), Ratliff and Picard (1978), Morris 
and Verdini (1979), Megiddo and Tamir (1983), Calamai and Conn (1987); see also, the bibliography 
of Domschke and Drext (1984)). Farebrother (1987a) applies L1�� norm to committee decision theory. 
Mitchell (1987) uses L1�� norm to find a shortest path for a robot to move among obstacles. L1�� norm has 
been applied to chemistry by Fausett and Weber (1978); in geophysic by Dougherty and Smith 
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(1966), Claerbout and Muir (1973), Taylor and Banks and McCoy (1979); in astronomy by 
Rousseeuw (1987), in physical process and pharmacokinetic by Frome and Yakatan (1980), Gonin 
and Money (1987a). For mechanical representation of L1�� norm see, Farebrother (1987d). Application 
of the L1�� norm in power systems for static state estimation is given by Kotiuga and Vidyasagar 
(1982). Anderson (1965) suggests using L1�� norm estimation in order to assure non negative 
coefficient in linear time equations. For application on the data of orbital measurement see Mudrov et 
al (1968). 

 
9. Other variants

Narula and Wellington (1977a) propose the minimization of sum of weighted absolute errors. 
That is, minimizing the expression Σwi│ui│. An algorithm for this problem is introduced. Narula and 
Wellington (1977b) proposd a special case of the above formulation by the name, "minimum sum of 
relative errors". In this problem wi are set equal to 1/│yi│ (see also comment of Steiger and 
Bloomfield (1980)). 

Narula and Wellington (1977c) give an algorithm for L1�� norm regression when the model is 
restricted to pass through the means of each of the variables (see, Farebrother (1987c) for a remark). 
In the case of restricted L1�� norm estimation some algorithms presented by Young (1971), Armstrong 
and Hultz (1977), Barrodale and Roberts (1977,78), Bartels and Conn (1980a,b), Armstrong and Kung 
(1980). An algorithm for L1�� norm regression with dummy variables is given by Armstrong and Frome 
(1977). Womersley (1986) introduces a reduced gradient algorithm for censored linear L1�� norm 
regression. 

In the context of stepwise regression and variable selection, there are also special algorithms for 
the case of L1�� norm (see, Roodman (1974), Gentle and Hansen (1977), Narula and Wellington 
(1979,83), Wellington and Narula (1981), Dinkel and Pfaffenberger (1981), Armstrong and Kung 
(1982a)). 

An algorithm for regression quantiles is given by Narula and Wellington (1984). Computation 
of best one-sided L1� � norm regression, that is finding an approximation function which is everywhere 
below or above the function is given by Lewis (1970). For numerical techniques to find estimates 
which minimize the upper bound of absolute deviations see Gaivoronski (1987). 

Arthanari and Dodge (1981) proposed a convex combination of L1�� and L2 norms objective 
functions to find new estimator for linear regression model. Dodge (1984) extends this procedure to a 
convex combination of Huber M-estimator and L1�� norm estimator objective functions. Dodge and 
Jureckova (1987) showed that the pertaining convex combination of L1�� and L2 norms estimates can be 
adapted in such a way that it minimizes a consistent estimator of the asymptotic variance of the new 
produced estimator. In Dodge and Jureckova (1988) it is discussed that the adaptive combination of 
M-estimator and L1�� norm estimator could be selected in an optimal way to achieve the minimum 
possible asymptotic variance. 

Instead of minimizing the absolute deviations, Nyquist (1988) minimized absolute orthogonal 
deviations from the regression line. In this paper, computational aspects of this estimator is considered 
and a connection to the projection pursuit approach to estimation of multivariate dispersion is pointed 
out. Spath and Watson (1987) also introduce orthogonal linear L1�� norm approximation method. 
Application of orthogonal distance criterion for L2 and general Lp norms may be found in Spath 
(1982,86b), Watson (1982b), Wulff (1983). 

Rousseeuw (1984) proposes a new method of estimation called by "least median of squares" 
regression. This estimator is derived by minimizing the expression, med(ui2) fou ß. The resulting 
estimator can resist the effect of nearly 50% of contamination in the data. For an applied book on this 
topic see Rousseeuw and Leroy (1987). Computational algorithms of this estimator may be found in 
Souvaine and Steele (1987), Steele and Steiger (1986). 

When the number of observations in comparison with the number of unknowns is large, it ought 
to be better to split the observations into some unknown clusters and look for corresponding 
regression vectors such that the average sum of the Lp norm of the residual vector attains a minimum. 
This combination of clustering and regression is called clusterwise regression. A case study and 
numerical comparison for clusterwise linear L1�� and L2 norms regressions are given by Spath (1986a). 
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For clusterwise linear L1�� norm regression algorithms see Spath (1986c), Meier (1987), and for 
presentation of clusterwise regression see Spath (1985,87). 

Application of the L1�� norm to one and two-way tables is given by Armstrong and Frome 
(1976b,79), Buckley and Kvanli (1981) (see also, Bloomfield and Steiger (1983) for general 
discussions). 

There are other applications of L1�� norm in U-statistics by Chun (1987), Baysian approach by 
Militky and Cap (1987), isotonic regression by Menendez and Salvador (1987), sample allocation by 
Melaku and Sadasivan (1987) and method of averages by Kveton (1987). 
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