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Abstract 
 In this paper, we propose four algorithms for L1 norm computation of regression 
parameters, where two of them are more efficient for simple and multiple regression models.  
However, we start with restricted simple linear regression and corresponding derivation and 
computation of weighted median problem. In this respect a computing function is coded.  
With discussion on the m parameters model we continue to expand the algorithm to include 
unrestricted simple linear regression and two crude and efficient algorithms are proposed. 
The procedures are then generalized to the m parameters model by presenting two new 
algorithms, where the algorithm 4 is selected as more efficient. Various properties of these 
algorithms are discussed. 
 

1. Introduction 
 

In Bidabad (1989a,b), various aspects of the L1 norm regression were reviewed. We 
observed that the L1 norm criterion is going to find its place in scientific analysis. Since it is 
not computationally comparable with other criteria such as L2 norm, it needs more work to 
make it a hand tool. The closed form of the solution of the L1 norm estimator has not been 
derived yet, and therefore, makes further inferences of the properties of this estimator 
difficult. Any attempt to give efficient computational algorithms which may introduce 
significant insight into the different characteristics of the problem is desirable. In this regard, 
we shall try to give a general procedure in this paper to solve L1 norm linear regression 
problem. The proposed algorithms are based on a special descent method and use discrete 
differentiation technique. Primary designs of the algorithms have been discussed by Bidabad 
(1987a,b,88a,b). By manipulating these algorithms, more efficient ones were introduced by 
Bidabad (1989a,b) which has been shown to have better performance than other existing 
algorithms. 

Consider the following regression model, 
 m

yi = Σ βjxji + ui i=1,...,n                                     (1) 
 j=1 
where βj, j=1,...,m are population parameters to be estimated, yi, xji and ui are dependent, 
independent and random variables respectively. We wish to estimate βj's by minimizing the 
expression,  
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n n m
S = Σ │ui^│ = Σ │yi - Σ ßj^xji│ (2) 

 i=1             i=1        j=1 
Suppose m=1, then expression (2) reduces to, 
 n n n

S = Σ │yi - yi^│ = Σ │yi - ß^xi│ = Σ Si (3) 
 i=1                    i=1                       i=1 
A typical element, Si=|yi-β^xi| can be viewed as a broken line in the Sxβ^ plane composed of 
two half-lines. Si attains its minimum which is zero at,  
 βi^ = yi/xi (4) 
The slopes of the half-lines to the left and right of βi^ are -|xi| and |xi| respectively. So, Si's are 
all convex and hence their sum S is also convex with a slope at any β^ equal to sum of the 
slopes of Si's at that value of β^. Since the slope of each Si changes only at the corresponding 
βi^, the minimum of S will lie on one of the βi^. Thus, the regression line will pass through 
origin with the slope equal to βi^ which minimizes S. On the other hand, to find the L1 norm 
estimate of β we need to find only one observation (see, Karst (1958), Taylor (1974)). 
Furthermore, Taylor (1974) concludes that: "This implies, of course, that the regression line 
must pass through the observation corresponding to the minimizing i. The regression line, 
therefore, is determined by the point of origin and the observation associated with minimizing 
βi^". But he did not continue this approach, that is, minimizing S with respect to subscript i. 
In this paper as Bidabad (1987a,88a) a first endeavor is to develop this point of view. In the 
next section after rewriting (3) in a suitable fashion, the value of i is determined by using 
discrete differentiation. 
 By a similar discussion it can be concluded that when the number of parameters is m, m 
observations must lie on the regression hyperplane. On the other hand, m equations of the 
form given by (5) are necessary to specify the regression hyperplane (see also Bidabad 
(1989a,b)). 
 m

yi - Σ βj^xji = 0                                                                                                                   (5) 
 j=1 
Now, let us proceed with the simplest regression model. 
 
2. Restricted simple linear regression 
 For model (1) consider the case of one independent variable with no intercept, namely, 
yi=βxi+ui. To find the L1 norm estimate of β, the following procedure can be suggested. 
 n n n n

S = Σ |ui| = Σ |yi - βxi| = Σ (yi - βxi)sgn(yi - βxi) = Σ |xi|(yi/xi - β)sgn(yi/xi - β) (6) 
 i=1       i=1               i=1                                    i=1 
Let zi=yi/xi and sort zi in descending order. Rename the resultant ordered zi, i=1,...,n to zh,
h=1,...,n. Elements of zh should have the following property:  
 zh > zl if h < l  for all h,l=1,...,n. 
Rewrite (6) with ordered observations as, 
 n

S = Σ |xh|(zh - β)sgn(zh-β) (7) 
 h=1 
Let us denote the observation which will be on the regression line by (xt+1,yt+1) - that is the 
(t+1)th observation in the zh array. Value of zh is the slope of a ray passing through the origin 
and the hth observation. Therefore, 
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if, h < t+1  then, zh > β and  uh > 0
if, h = t+1  then, zh = β and  uh = 0
if, h > t+1  then, zh < β and  uh < 0

We can now rewrite (7) as follows, 
 t n

S = Σ |xh|(zh - β) - Σ |xh|(zh - β) (8) 
 h=1                 h=t+1 
To find the minimum of S, we need to differentiate it with respect to β and subscript t, 
because both β and t are unknowns. Note that β has continuous domain and t has discrete 
domain. Thus, 
 δS t n
── = - Σ │xh│ + Σ │xh│ (9) 

 δß h=1          h=t+1 
The differentiation of S with respect to subscript t must be discrete derivative (see, Bender 
and Orszag (1978), Clarke (1983)): 
 ∆(S)                      S[t+∆(t)]-S(t) 
 ─── = lim      ────────── = S(t+1)-S(t) = 
 ∆(t)        ∆(t)─>1         ∆(t) 
 

t+1                     n                          t                        n 
 Σ │xh│(zh-ß) - Σ │xh│(zh-ß) -  Σ │xh│(zh-ß) + Σ │xh│(zh-ß) =  2│xt+1│(zt+1-ß) = 0 
 h=1                 h=t+2                    h=1                 h=t+1 
thus, 
 ß^ = zt+1 = yt+1/xt+1 (10) 

It should be noted that if xt+1=0 then the value of zt+1=l, and when the array z is sorted, 
infinite values of z locate at extremes of two tails of the array and make no problem in (10). 
Remember that equation (10) is the same as relation (4). Equations (9) and (10) are two 
equations with two unknowns t and β. The variable t can be found by rewriting (9) as 
follows, 
 k n

Dk ≡ Σ │xh│ - Σ │xh│ k=1,...,n                                                                        (11) 
 h=1        h=k+1 

It is obvious that Dk is an increasing function of k. When k increases from one to n, 
Dk attains different values which increases from negative to positive. So, initially k is set 
equal to one and Dk is computed accordingly. If Dk is negative, k is increased by one and the 
procedure is repeated until Dk becomes positive. When Dk reaches the first positive value, 
then, t+1=k. By this procedure, value of t+1 is found. The observation corresponding to this 
subscript (t+1=k) is selected (xt+1,yt+1). The L1 norm estimate of β is found by substituting the 
values of xt+1 and yt+1 into (10), (see, Bidabad (1987a,88a)). 

The presented procedure is essentially the weighted median procedure of Laplace 
(1818). Namely, this solution is the steps that Laplace took. Main difference is the 
mathematical derivation. Laplace found this solution by analyzing algebraic characteristic of 
the L1 norm objective function; while the above procedure exactly differentiates the objective 
function. Another new contribution of this procedure is application of the partial discrete 
differentiation over subscript accompanying with conventional differentiation on a regular 
variable with continuous domain.  It should be remembered that Boscovich (1757) solved this 
problem by a geometrical procedure and Karst (1958) by an analytical method. 
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2.1 Computation of weighted median 
Two series of computations are necessary to compute weighted median. One sorting 

algorithm is essential to sort the z array and restoring the corresponding subscripts to 
compute the second part of calculation to find the optimal value of k by using Dk defined by 
(11). 

Efficient sorting algorithms exist for the first part of the computation. The algorithms 
'quicksort' of Hoare (1961,62), 'quickersort' of Scowen (1965) and 'sort' of Singleton (1969) 
have desirable performances and efficiencies. For the second part of the computation there is 
no special purpose procedure, but Bloomfield and Steiger (1980) used the partial sorting of 
Chambers (1971) to give an efficient way to combine the two steps of sorting the z array and 
finding the value of k. The superiority of this procedure is in sorting the smaller segments of 
z array rather than all its elements. With some modification, this procedure is used for our 
proposed algorithms in the forthcoming sections. This procedure can be stated as the 
following function. 
 
FUNCTION LWMED (n,ys,w,l) 
Step 0) Initialization. 
 Real: ys(n), w(n). 
 Integer: l(n), hi. 
 Set: ii=0, shi=0, slo=0, sz=0, sp=0, sn=0. 
Step 1) Compute left, middle and right sum of weights. 
 Do loop for i=1,n: w(i)=|w(i)|; if ys(i)<0, then sn=sn+w(i), if ys(i)>0, then sp=sp+w(i), if 

ys(i)=0 then sz=sz+w(i); end do. 
 If shi≤slo then go to step 2.b, otherwise go to step 2.a. 
Step 2) Assign subscripts for arrays. 
 a. Let: shi=0. 
 Do loop for i=1,n: if ys(i) ≤0 go to continue, otherwise ii=ii+1, l(ii)=i, continue, end do. 
 Go to step 2.c. 
 b. Let: slo=0. 
 Do loop for i=1,n: if ys(i)>0 go to continue, otherwise ii=ii+1, l(ii)=i, continue, end do. 
 c. Let: lo=1, hi=ii. 
Step 3) Check for solution. 
 If hi>lo+1 then go to step 4, otherwise lwmed=l(lo). 
 If lo=hi return, otherwise if ys(l(lo)) ≤ys(l(hi)) go to step 3.a,  
 otherwise lt=l(lo), l(lo)=l(hi), l(hi)=lt, lwmed=l(lo). 
 a. If shi+w(l(hi))>slo+w(l(lo)) then set lwmed=l(hi), otherwise return. 
Step 4) Divide the string into two halves then sort. 
 Set: mid=(lo+hi)/2, lop=lo+1, lt=l(mid), l(mid)=l(lop), l(lop)=lt. 
 a. If  ys(l(lop)) ≤ys(l(hi))  then  go  to  step  4.b, otherwise lt=l(lop), l(lop)=l(hi), l(hi)=lt. 
 b. If ys(l(lo)) ≤ys(l(hi)) then go to step 4.c, otherwise lt=l(lo), l(lo)=l(hi), l(hi)=lt. 
 c. If ys(l(lop)) ≤ys(l(lo)) then go to step 5, otherwise lt=l(lop), l(lop)=l(lo), l(lo)=lt. 
Step 5) Compute the accumulation of weights. 
 Let: lwmed=l(lo), i=lop, j=hi, xt=ys(lwmed), tlo=slo, thi=shi. 
 a. Set: tlo=tlo+w(l(i)), i=i+1. 
 If ys(l(i))<xt then go to step 5.a, otherwise go to step 5.b. 
 b. Let: thi=thi+w(l(j)), j=j-1. 
 If ys(l(j))>xt then go to step 5.b, otherwise if j≤i then go to step 6,  
 otherwise lt=l(i), l(i)=l(j), l(j)=lt, go to step 5.a. 
Step 6) Test for solution. 
 Let: test=w(lwmed). 
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If i≠j then go to step 6.a, otherwise test=test+w(l(i)), i=i+1, j=j-1. 
 a. If test≥|thi-tlo| then return, otherwise, if tlo>thi then step 6.b, 
 otherwise slo=tlo+test, lo=i, go to step 3. 
 b. Let: shi=thi+test, lo=lop, hi=j. go to step 3. 
END 
 
2.2 Discussion of the m parameters model 

The procedure applied to the simple one parameter model can not be simply 
generalized to the m parameters model. This difficulty is due to the fact that we can not 
reorder observations in such a way that their corresponding residuals are increasingly or 
decreasingly ordered. On the other hand, to apply the discrete differentiation technique, 
primarily (2) should be rewritten as follows: 
 t m n m

S = Σ (yh - Σ ßjxjh) - Σ (yh - Σ ßjxjh) (12) 
 h=1      j=1        h=t+1      j=1 

Expression (12) which is free of absolute value sign is generalization of (8) for m 
parameters. But our first problem is to find a logic which enables us to form (12). On the 
other hand, we need to reorder observations in such a way that when h is less, equal or greater 
than t+1, uh be greater, equal or less than zero respectively; and as h increases from one to n, 
the corresponding residual uh decreases accordingly. 

If (2) could be written as (12), we could again differentiate it with respect to βj for all 
j=1,...,m and t. Differentiating S with respect to βj for all j=1,...,m would give, 
 δS t n
── = - Σ xjh + Σ xjh j=1,...,m                                                                                 (13) 

 δßj h=1      h=t+1 
In order to differentiate S with respect to discrete domain variable t we would have, 
 ∆(S)                    S[t+∆(t)]-S(t) 
 ─── = lim         ──────── = S(t+1)-S(t) = 
 ∆(t)      ∆(t)─>1         ∆(t) 

 
t+1     m            n         m            t+1     m             n         m                      m 

 Σ (yh-Σ ßjxjh) - Σ (uh-Σ ßjxjh) - Σ (yh-Σ ßjxjh) + Σ (yh-Σ ßjxjh) =2(yt+1-Σ ßjxj,t+1) = 0 (14) 
 h=1   j=1        h=t+2   j=1           h=1    j=1       h=t+1     j=1                  j=1 
m distinct values for t can be computed from (13) by using the following Dkj for each 
explanatory variable. The procedure to compute t is similar to what we did in (11) for the one 
parameter model. 
 k n

Dkj ≡ Σ xjh - Σ xjh j=1,...,m; i=1,...,n                                                                         (15) 
 h=1    h=k+1 

It should be noted that these m values for t, all give a unique value for S in (12), 
because all of the errors corresponding to these t's have zero values. This becomes clear by 
zero residuals property of the L1 norm regression that there exist m points on the regression 
hyperplane which have zero residuals. In (12), these m points locate sequentially, because we 
had reordered observations in such a way that, when h increases from one to n, the errors 
decrease from greatest positive to lowest negative values. So, these m zero errors will locate 
one after another nearly in the middle of n elements sequence of (12). Corresponding to these 
m values of t, m observations are recognized. Substitute the values of these m observations 
into (14), m equations are found which can be solved simultaneously for m unknown βj's. 
These last m equations again confirm the above cited property of the L1 norm regression. 
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Since for the m parameters model, the ordering of residuals before computing optimal 
values of βj's is not possible, another device should be adopted to compute the L1 norm 
estimates of the multiple linear regression parameters. 
 
3. Unrestricted simple linear regression 

To find the L1 norm estimates of {βj,j=1,...,m} for model (1), we shall try to propose 
algorithms to search for those observations on the optimal regression hyperplane. For m=2 
and x1i=0, i=1,...,n; (1) reduces to restricted simple linear regression with only one parameter. 
The L1 norm estimate of the slope β2 for simple model can be obtained by the algorithm 
given in the previous sections. Let us now consider a simple unrestricted linear model in 
which m=2 and x1i=1 for all i=1,...,n; namely, 

yi = ß1 + ß2x2i + ui (16) 
 

3.1 Algorithm 1 
For the model given in (16), the L1 norm objective function S to be minimized will be, 

 n
S = Σ │yi - ß1 - ß2x2i│ (17) 

 i=1 
Let k1 denote a subscript which belongs to the range of one to n, and assume that k1

th 
observation (yk1,x2k1) is a candidate to be on the regression line. If this is the case, then uk1=0 
and we can transfer the origin of YxX2 coordinates to the point (yk1,x2k1) without any loss. 
For this, we should rewrite all observations as deviates from the point (yk1,x2k1), 
 yi

k1
 = yi - yk1,  x2i

k1= x2i - x2k1 i=1,...,n                                                             (18) 
Where the terms with superscripts k1 denote deviated values. Rearrange the terms; 
 yi = yi

k1 + yk1,                  x2i =x2i
k1 + x2k1 i=1,...,n                                                             (19) 

 i=1,...,n 
Now, substitute (19) into (17), then, our L1 norm minimization problem can be redefined as, 
 n

min: Sk1 = Σ |yi
k1-β2x2i

k1 + (yk1-β1-β2x2k1)|                                                                        (20) 
 β1,β2 i=1 
Since, we assumed that the k1th observation is on the regression line, the expression            
yk1-β1-β2x2k1=0. Thus (20) reduces to, 
 n

min: Sk1 = Σ |yik1 - β2x2i
k1| (21) 

 β2 i=1 
Solution of the optimization problem (21), is the same as the one described before for 

one parameter linear model. Note that when uk1=0, then the minimum value of (21) is equal 
to the minimum value of (17). 

Let β2 derived by minimizing (21) be denoted by β2
k1. By changing k1 from one to n 

and minimizing (21), β2
1,...,β2

n are attained accordingly. Now the question is: what value of 
k1 minimizes (17)? In other words, which observations are on the optimal regression line? 
Note that in the two parameters L1 norm linear model, there exists at least two observations 
with zero errors. Transferring of YxX2 coordinates to both these points does not change the 
minimum of (17). Suppose pth and qth are those observations on the regression line, thus, 
 up = yp - β1 - β2x2p = 0,         uq = yq - β1 - β2x2q = 0                                                         (22) 

Rewriting (18) and (19) for k1=p,q and substituting them into (21), yields,  
 n

Sp = Σ |yi
p - β2x2i

p| (23) 
 i=1 
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n
Sq = Σ |yi

q - β2x2i
q| (24) 

 i=1 
Using (18) and rewriting (23) and (24), it is shown that Sp is equal to Sq,

n
Sp = Σ |yi-β2x2i - (yp-β2x2p)|                                                                                               (25) 

 i=1 
 n

Sq = Σ |yi-β2x2i - (yq-β2x2q)|                                                                                               (26) 
 i=1 
Sp is equal to Sq if and only if the two parentheses inside the absolute value signs of (25) and 
(26) are equal. This can be concluded by solving the two equations of (22) for β1. That is, 
 β1 = yp - β2x2p = yq - β2x2q (27) 
The equality of Sq and Sp is because the points p and q are on the regression line and 
therefore up=uq=0. Thus, Sp=Sq, so, the values of β2

p and β2
q derived by minimizing either Sp

or Sq must be equal. This gives a criterion to find the desired β2 from all β2
k1 for k1=1,...,n. 

That is, when β2
p=β2

q. The estimated value of β2 is denoted by β2^. Value of β1^ is simply 
computed by (27). Now let us summarize the whole procedure for finding the values of β1^
and β2^ for the model given by (16). 
 
Crude algorithm 1 
Step 0) Set k1=1. 
Step 1) Compute (18). 
Step 2) Minimize (21) by using weighted median procedure and find ß2

k1.
Step 3) Check if ß2

k1=ß2
k1-k for 0<k<k1, then set ß2^=ß2

k1 and ß1^=yk1-ß2^x2k1 then stop. 
Step 4) Increase k1 by one and go to step 1. 
 
3.2 Algorithm 2 

The crude algorithm 1 for finding ß1^ and ß2^ is not computationally efficient because 
it usually requires testing the majority of observations. In order to make this algorithm 
efficient, some elaborations are necessary.  

Instead of setting k1=1, let us set k1 equal to an arbitrary integer value such as a 
where a is any integer from one to n. Suppose now, ua=ya-ß1-ß2x2a=0, and rewrite (21) as, 
 n

min: Sa = Σ │yi
a - ß2x2i

a│ (28) 
 ß2 i=1 
Minimizing (28) gives ß2

a which is equal to  
 yb

a yb - ya
ß2

a = ─── = ───── (29) 
 x2b

a x2b - x2a 
On the other hand, by pivoting on the ath observation another point such as b is found where b 
refers to that observation which has zero error in the minimum solution of (28), so,        
ub=yb-ß1-ß2x2b=0. Let us denote the minimum of Sa in (28) as Sa

*, then, 
 n

Sa
* = Σ │yi

a - ß2
ax2i

a│ (30) 
 i=1 
Note that, 
 ß1 = ya - ß2

ax2
a = yb - ß2

ax2b (31) 
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This comes from multiplying (29) by its denominator and rearranging the terms. Substitute 
(31) in (17), 
 n n

S = Σ │yi-ya-ß2
a(x2i-x2

a)│ = Σ │yi-yb-ß2
a(x2i-x2a)│

i=1                                  i=1 
or, 
 n n

S = Σ │yi
a-ß2

ax2i
a│ = Σ │yi

b-ß2
ax2i

b│ (32) 
 i=1                        i=1 
Using (30) the first sum in (32) is Sa

* and the second sum is Sb evaluated at ß2=ß2
a. Thus, it 

can be concluded that, 
 Sa

* = Sb│ (33) 
 │ß2=ß2

a

Sa
* is at minimum but Sb│ still can be minimized for other values of ß2.

│ß2=ß2
a

Therefore, an important result is derived, that is, 
 Sa* > Sb* (34) 
The inequality of (34) guarantees that if we choose an arbitrary point to transfer the origin of 
coordinates to it and minimizing the objective function (21) another point is found, then 
transferring the origin to this newly found point decreases the total sum of absolute errors. 
Therefore, at each transference we get closer to the minimum of S. By a similar discussion, 
this conclusion can be generalized as,  
 Sa* > Sb* > Sc* > Sd* ... (35) 
Note that a is an arbitrary starting point. The point b is derived by minimizing Sa, c is derived 
by minimizing Sb and d is derived by minimizing Sc and so on. 

Now, the question is, when the minimum value of S is reached? Suppose S*=Sf*; by 
transferring the origin of coordinates to the point f and minimizing Sf, the gth observation is 
derived. When S*=Sf* by minimizing Sg, fth observation is again found, because Sg*=Sf*=S* 
and the gth and fth observations are both on the L1 norm regression line.  This conclusion can 
be a criterion to stop the procedure. Hence, 
 Sa* > Sb* > Sc* > Sd* ... > Sf* = Sg* = S*                                                                        (36) 

It should be noted that if the minimum solution of S is not unique, that is function S 
has a horizontal segment, the procedure stops when it reaches the first minimum solution. 

Now, let us introduce the whole stages of this algorithm to find the L1 norm estimates 
of ß1 and ß2 in the simple linear model (16). 
 
Algorithm 2 
Step 0) Select an arbitrary integer value a between one to n and set k1=a. 
Step 1) Compute (18) with k1=a. 
Step 2) Minimize (21) by using weighted median procedure and find the appropriate 

observation on the line, namely observation b. 
Step 3) Compute (18) with k1=b. 
Step 4) Minimize (21) and find that observation on the line; observation c. 
Step 5) Check if c=a, then ß2^=yb

c/x2b
c, ß1^=yc-ß2^x2c and stop. 

Step 6) Set a=b and go to step 1. 
 

Operationally, the following steps are taken. 
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PROGRAM BL1S 
Step 0) Initialization. 
 Parameter: n. 
 Real: y(n), x2(n), z(n), w(n). 
 Integer: l(n). 
 Set: k1=arbitrary, k1r=0, k1s=0, iter=0. 
 Read (y(i), x2(i), i=1,n) 
Step 1) Compute weights and ratios. 
 Do loop for i=1,k1-1: w(i)=x2(i)-x2(k1), z(i)=(y(i)-y(k1))/w(i), end do. 
 Set: w(k1)=0, z(k1)=0. 
 Do loop for i=k1+1,n: w(i)=x2(i)-x2(k1), z(i)=(y(i)-y(k1))/w(i) end do. 
 Set: iter=iter+1. 
Step 2) Compute weighted median. 
 Let: lm=LWMED(n,z,w,l). 
Step 3) Check for optimality. 
 Set: k1s=k1r, k1r=k1. 
 If lm=k1s then go to step 4, otherwise k1=lm. 
 Go to step 1. 
Step 4) Compute the solution. 
 Let b2=z(lm), b1=y(k1)-b2*x2(k1). 
 Print b1, b2, k1, lm, iter. 
 Stop. 
END 
 
4. Generalization to m parameters 

Now we extend the above procedure to the restricted two parameters model, namely, 
 yi = ß2x2i + ß3x3i + ui (37) 
Let, 
 n

S = Σ │yi - ß2x2i - ß3x3i│ (38) 
 i=1 
S can be written as, 
 n n

S = Σ │x2i││yi/x2i - ß2 - ß3x3i/x2i│ = Σ │x2i││yi
s1 - ß2 - ß3x3i

s1│ (39) 
 i=1                                                 i=1 
where, 
 yi

s1 = yi/x2i ,         x3i
s1 = x3i/x2i i=1,...,n                                                              (40) 

Minimization of (39) is similar to that of simple linear model explained in the previous 
section. An important distinction for solving (39) in comparison to (17) is the expression 
│x2i│ which has been multiplied to │yi

s1-ß2-ß3x3i
s1│. This multiplication does not make any 

problem when (39) is minimized, because if we deviate yi
s1 and x3i

s1 from the point k1 as, 
 yi

s1k1 = yi
s1 - yk1

s1, x3i
s1k1 = x3i

s1 - x3k1
s1 i=1,...,n                                       (41) 

then we can rewrite (39) similar to (21), so, 
 n

Sk1 = Σ │x2i││yi
s1k1 - ß3x3i

s1k1│ (42) 
 i=1 
To minimize (42), we should use the following expression, 
 n

Sk1 = Σ │x2ix3i
s1k1││yi

s1k1/x3i
s1k1 - ß3│ (43) 

 i=1 
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According to Bidabad (1987a,88a), in applying discrete derivative to (43) the term in the first 
absolute value sign is used to find the subscript of that point which locates on the regression 
line.  In comparison to the simple unrestricted linear model (16) this is the main difference. 

In the case of inclusion of an intercept in the model given by (37), we have, 
 n

S = Σ │yi - ß1 - ß2x2i - ß3x3i│ (44) 
 i=1 
Let k1 be an arbitrary subscript then, transference of the origin of coordinates to the k1th point 
is done by deviating all observations from this point, namely, 
 yi

k1 = yi - yk1,             x2i
k1 = x2i - x2k1,            x3i

k1 = x3i -x3k1          i=1,...,n                                 (45) 
Rearrange the terms of (45) and substitute in (44), then we have, 
 n

S = Σ │yi
k1-ß2x2i

k1-ß3x3i
k1+(yk1-ß1-ß2x2k1-ß3x3k1)│ (46) 

 i=1 
If k1th observation is on the regression plane, then 
 yk1 - ß1 - ß2x2k1 - ß3x3k1 = 0                                                                                               (47) 
So, instead of minimizing (44), the following function is minimized: 
 n

Sk1 = Σ │yi
k1 - ß2x2i

k1 - ß3x3i
k1│ (48) 

 i=1 
Minimization of (48) is completely similar to that of (38) and can be proceeded as follows, 
 n n

Sk1 = Σ │x2i
k1││yi

k1/x2i
k1 – ß2 - ß3x3i

k1/x2i
k1│ = Σ │x2i

k1││yi
s1 - ß2 - ß3x3i

s1│ (49) 
 i=1                                                              i=1 
where, 
 yi

s1 = yi
k1/x2i

k1,         x3i
s1 = x3i

k1/x2i
k1         i=1,...,n                                                                 (50) 

Now, again, transfer the origin of the two dimensional Ys1xX3
s1 coordinates to an arbitrary 

point k2 by deviating yi
s1 and x3i

s1 from yk2
s1 and x3k2

s1 as follows, 
 yi

s1k2 = yi
s1 - yk2

s1 ,                 x3i
s1k2 = x3i

s1 - x3k2
s1 i=1,...,n                                   (51) 

By rearranging the terms of (51) and substituting them into (49) and assuming that the point 
k2 is on the regression plane, we can rewrite (49) as, 
 n

Sk1k2 = Σ │x2i
k1││yi

s1k2 - ß3x3i
s1k2│ (52) 

 i=1 
or, 
 n

Sk1k2 = Σ │x2i
k1x3i

s1k2││yi
s1k2/x3i

s1k2 - ß3│ (53) 
 i=1 

The objective function (53) can be minimized as suggested before. Now, the 
procedure from (49) to (53) can be repeated with different values of k2 as in algorithm 2 
proposed for the simple linear model. When the last point (M) in the process of minimizing 
(53) is reached, the origin of three dimensional YxX2xX3 coordinates (k1) is transferred to 
this newly found point M and the procedure from (45) to (53) is again repeated with the 
exception that instead of assigning an arbitrary value to k2, we set k2 equal to the previous 
value of k1. This procedure continues until the point found by minimizing (53) is equal to 
previous value of k1. The values of ß1^, ß2^ and ß3^ can be computed according to the 
following formulas,  
 ß3^ = yM

s1k2/x3M
s1k2 , 2^ = yk2

s1 - ß3^x3k2
s1, ß1^ = yk1 - ß2^x2k1 - ß3^x3k1

 (54) 
It should be noted that at each step it can be proved that we are getting closer to the 

minimum of S in (44). The proof is similar to that of the two parameters model given by (16). 
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It can be shown that for any two arbitrary points k1 and k2, value of Sk1k2 given by 
(53) for any commutation for k1 and k2 remains unchanged. This will be shown in the next 
sections. However, 
 Sk1k2 = Sk2k1 (55) 
Now, following the procedure of the proof given by (28) through (36) we can write, 
 Sk1a* = Sk1b│ (56) 
 │ß3=ß3

k1a 
where Sk1a* denotes the optimal value of Sk1a with respect to ß3 of (53) for any arbitrary 
integer a from one to n, namely, 
 Sk1a* = min (Sk1a) (57) 
 ß3
Subscript b in (56) denotes the observation which is found by minimizing Sk1a. Since the ath 
and bth observations both are on the regression hyperplane, by a similar discussion stated by 
(28) through (32) we can conclude that Sk1a* is equal to Sk1b which evaluated at that value of 
ß3 which is found by minimizing Sk1a. Since the left hand side of (56) is minimum and its 
right hand side can be decreased by other values of ß3, it can be concluded that, 
 Sk1a* > Sk1b* (58) 
According to (55) we can write, 
 Sk1a* > Sk1b* = Sbk1* (59) 
Since in each step we discard an observation from the basis and replace it with the newly 
found one, we have, 
 Sk1a* > Sk1b* = Sbk1* > Sbc* = Scd* (60) 
or generally, 
 Sk1a* > Sk1b* > Sbc* > Scd* (61) 
The minimum solution S* is reached when by entering the fth observation in the basis we can 
not reduce the objective function value. That is the previous observation is again reached, 
namely, 
 Sk1a* > Sab* > Sbc* > Scd* > ... > Sfg* = Sgf* = S*                                                            (62) 
The relation (62) guarantees that at each step we are descending down the objective function 
surface. 
 
4.1 Algorithm 3 
 To generalize the above algorithm to the m parameters linear model (1), we should reduce 
the number of parameters in the same fashion as in the case of three parameters model 
explained above. If the model is restricted, we can make it unrestricted by dividing all 
dependent and independent variables to one of independent variables as follows. 
 n m n m

S = Σ │yi- Σ ßjxji│= Σ │x2i││yi/x2i -ß2- Σ ßjxji│ (63) 
 i=1      j=2          i=1                          j=3 
If the model is unrestricted, we can make it restricted by deviating all observations from an 
arbitrary one observation; namely, 
 n m n m

S = Σ │yi-ß1- Σ ßjxji│= Σ │yi
k1 - Σ ßjxji

k1│ (64) 
 i=1           j=2          i=1          j=2 
where, 
 yi

k1 = yi - yk1, xji
k1 = xji - xjk1 i=1,...,n; j=2,...,m                                               (65)

Therefore, according to the transformations (63), (64) and (65) any m parameters 
model can be reduced to a simple restricted one parameter model and then be estimated as a 
weighted median problem. To conduct this transformation, if the model is unrestricted, we 
should deviate all observations from an arbitrary one and make the model restricted. Then 
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divide all dependent and independent variables to an arbitrary independent variable. This 
makes the model unrestricted. At this step we have reduced the number of parameters by one. 
By continuing this process, we can reduce any m parameters model to a one parameter 
model. If the model is restricted we should start by dividing all of the variables by one of the 
independent variables and make the model unrestricted. Now, we can again reduce one of the 
parameters by applying the procedures explained above in order to transform unrestricted 
model to restricted form. By solving the one parameter model, we can then solve for the two 
parameters and then three parameters models and so on. 

The most delicate part of this algorithm is that, at the starting point, once 
k1,k2,...,k(m-1) are selected arbitrarily, then the algorithm assigns the best possible values to 
the integers k1,k2,...,k(m-1). To explain the procedure, let us deal with the four parameters 
unrestricted linear model. Once, value of k1 is arbitrarily selected.  Deviate all observations 
from k1th observation. In this way, the model reduces to a three parameters restricted model. 
By dividing all of the variables to one of the independent variables, our model becomes 
completely similar to (44). By minimizing (44) according to the algorithm previously 
explained for the three parameters model, subscript M corresponding to Mth point is derived. 
This is the newly found point which its subscript (M) is assigned to k1. The previous value of 
k1 is assigned to k2 and the previous value of k2 is assigned to k3 and the whole procedure is 
repeated again. The procedure stops when the value of M is equal to k1.  
 The above important assigning technique which is essential for pivoting on the origins of 
different size coordinates can be extended to more parameters models as we did before. 
Again, we should note that at each succeeding step we get closer to the minimum of S in (1). 
The proof is completely similar to the three parameters model explained before. The whole 
procedure is as follows. 
 
Algorithm 3 
Step 0) Select arbitrary points k1,k2,...,k(m-1). 
Step 1) Set counter=1. 
Step 2) Proceed the transformations (63) through (65) to reduce model to a one parameter 

transformed restricted linear model. 
Step 3) Apply weighted median procedure to find the point M. 
Step 4) If M is equal to previous value of k(counter) go to step 5; otherwise set k(counter)=M 

and go to step 1. 
Step 5) If counter = m-1 go to step 6; otherwise let counter=counter+1 and go to step 4. 
Step 6) Set k(m)=M. By using the final values of k1,...,k(m) solve the following system of 

equations for ßj^, for j=1,...,m; 
 m

Σ ßj^xjki = yki i=1,...,m 
 j=1 
 Stop. 
 
4.2 Algorithm 4

In algorithm 3 to solve any m parameters model, the reduced m-1 parameters model 
should be solved first and therefore makes the algorithm rather costly. Because to solve a m 
parameters model we should reduce the objective function value of the reduced m-1 
parameters model down to its minimum value and then going back to the m parameters 
model. In interior steps for m-1,m-2,...,1 this procedure repeats. In order to make this 
algorithm more efficient another assigning technique may be adopted. 

Once m-1 observations are selected arbitrarily. The S function is reduced to a one 
parameter weighted median problem as we did in algorithm 3 using (63) and (64). By solving 
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the weighted median problem a new observation M is found. Now, the newly found point is 
replaced by the most previous observation which entered the basis. The procedure is repeated 
until we can not find any new observation out of the current set of basis points and the 
deleted point in the previous iteration. On the other hand, in this algorithm m-1 point is 
selected as a basic feasible solution. By pivoting on this solution a new point is found to enter 
the basis and should be replaced by another one which was previously in the basis. The 
procedure ends when we can not enter any new point to reduce the objective function value. 
In this context it is similar to simplex procedure of linear programming technique. 

Algorithm 4 is also a descent method. Because in each iteration the value of S is 
decreased. Proof is completely similar to that of algorithm 3 stated before. The main 
difference of this algorithm with algorithm 3 is in choosing the point which should be deleted 
from the basis.  Therefore, in each step we need not to keep some points in the basis to solve 
smaller size models. On the other hand, in each m iterations all m points in the basis are 
discarded and new points enter. In algorithm 3 we kept some points in the basis until we 
reach an optimal point for smaller size reduced model. It should be noted that one point may 
be discarded and reenter the basis through m iterations. This is not contradictory and actually 
occurs especially when we are near the optimal solution.  

As we will see in the forthcoming section, due to different properties of this algorithm 
many manipulations in computational steps may be adopted to start calculations. Before 
making this algorithm more sophisticated it is suitable to summarize its general steps as 
follows. 
 
Algorithm 4 
Step 0) Select arbitrary points k1,...,k(m-1). 
Step 1) Proceed the transformations (63) through (65) to reduce model to one parameter 

transformed restricted linear model. 
Step 2) Apply weighted median procedure to find the point M. 
Step 3) Assign M to one of the k1,...,k(m-1) which is oldest in the basis. 
Step 4) Check if the newly found point M which enters the basis, discard the point which 

entered in previous iteration repeats m-1 times then go to step 5; otherwise go to 
step1. 

Step 5) Set k(m)=M. By using the final values of k1,...,k(m), solve the following system of 
equations for ßj^, for j=1,...,m; 

 m
Σ ßj^xjki = yki i=1,...,m 

 j=1 
 Stop. 
 

After discussing the properties of algorithm 4, we will give more expository steps of 
computation for this algorithm.  By using these properties we can make this algorithm more 
efficient. 
 
4.3 properties

Before discussing the properties of the proposed algorithms specifically algorithm 4, 
let us consider the following four parameters model L1 norm objective function, 
 n

S = Σ │yi-ß0-ß1x1i-ß2x2i-ß3x3i│ (66) 
 i=1 
Some steps should be taken to reduce (66) to a weighted median problem by entering three 
arbitrary integers k1, k2, k3 between one and n as follows. Note that function (1) has been 
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slightly redefined to include intercept as a simple term, in equation (66). Similar to the 
transformations (63) through (65) the following steps are taken sequentially. 

Deviate all observations from k1th observation, 
 yi

k1 = yi - yk1 i=1,...,n                                                                                                 (67) 
 xji

k1 = xji - xjk1 i=1,...,n; j=1,2,3                                                                                    (68) 
The objective function becomes, 
 n

Sk1 = Σ │yi
k1-ß1-ß2x2i

k1-ß3x3i
k1│ (69) 

 i=1 
Divide yik1 and xji

k1 for j=2,3 by x1i
k1 for all i=1,...,n; 

 yi
s1 = yi

k1/x1i
k1 i=1,...,n                                                                                                (70) 

 xji
s1 = xji

k1/x1i
k1 i=1,...,n; j=2,3                                                                                      (71) 

The objective function becomes, 
 n

Sk1 = Σ │x1i
k1││yi

s1-ß1-ß2x2i
s1-ß3x3i

s1│ (72) 
 i=1 
Deviate yi and xji

s1 for j=2,3 from k2th observation, 
 yi

k2 = yi
s1 -yk2

s1 i=1,...,n                                                                                               (73) 
 xji

k2 = xji
s1 - xjk2

s1 i=1,...,n, j=2,3                                                                                     (74) 
The objective function reduces to, 
 n

Sk1k2 = Σ │x1i
k1││yi

k2-ß2x2i
k2-ß3x3i

k2│ (75) 
 i=1 
Divide yi

k2 and xji
k2 for j=3 by x2i

k2 for all i=1,..,n; 
 yi

s2 = yi
k2/x2i

k2 i=1,...,n                                                                                                (76) 
 xji

s2 = xji
k2/x2i

k2 i=1,...,n; j=3                                                                                         (77) 
The objective function forms as, 
 n

Sk1k2 = Σ │x1i
k1x2i

k2││yi
s2-ß2-ß3x3i

s2│ (78) 
 i=1 
Deviate yi

s2 and xji
s2 from k3th observation, 

 yi
k3 = yi

s2 -yk3
s2 i=1,...,n                                                                                               (79) 

 xji
k3 = xji

s2 - xjk3
s2 i=1,...,n, j=3                                                                                        (80) 

Rewrite the objective function as, 
 n

Sk1k2 = Σ │x1i
k1x2i

k2x3i
k3││yi

s3-ß3x3i
k3│ (81) 

 i=1 
Divide yi

k3 by x3i
k3 for all i=1,...,n; 

 yi
s3 = yi

k3/x3i
k3 i=1,...,n                                                                                               (82) 

Finally the objective function becomes, 
 n

Sk1k2k3 = Σ │x1i
k1x2i

k2x3i
k3││yi

s3-ß3│ (83) 
 i=1 
Rewrite (83) as, 
 n

Sk1k2k3 = Σ │wi
k1k2k3││ri

s1s2s3-ß3│ (84) 
 i=1 
where, 
 wi

k1k2k3 = x1i
k1x2i

k2x3i
k3 (85) 

 ri
s1s2s3 = yi

s3 (86) 
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The objective function (84) is a weighted median problem which may easily be minimized to 
find ß3. Equation (84) for the general m parameters model  
 m-1 
 yi = Σ xjißj + ui i=1,...,n                                                                                              (87) 
 j=0 
 x0i=1                    i=1,...,n                                                                                                  (88) 
with the corresponding objective function, 
 n m-1 
 S = Σ │yi - Σ xjißj│ (89) 
 i=1      j=0 
is,                        n 
 Sk1k2...k(m-1) =  Σ │wi

k1k2...k(m-1)││ri
s1s2...s(m-1)-ßm-1│ (90) 

 i=1 
where, 
 wi

k1k2...k(m-1) = │x1i
k1x2i

k2...x(m-1)i
k(m-1)│ (91) 

 ri
s1s2...s(m-1) = yi

s(m-1) (92) 
Now, we proceed to explain the properties of algorithm 4 by using the formulation described 
above. 
 
Property 1 

If we start the computation with m-1 points which do not belong to the original set of 
observations, value of S decreases to its global minimum at each iteration. Suppose the points 
(yn+1,...,xm-1,n+1),...,(yn+m-1,...,xm-1,n+m-1) do not belong to our sample points. If n+1,n+2,...,n+m-
1 are assigned to k1,k2,...,k(m-1), then minimizing the function in (90) leads to finding a new 
point M which belongs to the sample observations. Replacing k1 by M and deleting the 
(n+1)th point from the basis and minimizing (90) leads to finding another point M' in the 
sample which will be replaced by the k2th observation which is out of our sample. Thus, in 
each iteration one of the out of sample points is deleted and optimization procedure will be 
done on the sample points after m-1 iterations. 

This property has a good performance on ill-conditioned data. That is if for example 
rounding error causes an observation to get incorrect rounded value, then this point in the 
next iteration will be replaced by a sample point and thus redirect the path of descending to 
the right points. 
 
Property 2 

Reduction of m-1 parameters model to fewer parameters model can be done by using 
the computation of m-1 parameters model and conversely. Thus stepwise and all possible 
regressions may be computed efficiently.  

To show this property let us deal with equation (86). Value of ri
s1s2s3 may be 

computed by substituting (67), (68), (70), (71), (73), (74), (76), (77), (79), (80) and (82) into 
(86). The result is, 
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By inspection, it is obvious that the contents of rectangle grid lines in (93) are ri

s1, ri
s1s2 and 

ri
s1s2s3. Generally, ri

s1s2...s(m-1) has the following scheme, 
1

1 2
1... ( 1)

1

1 2... ( 1)

s
i

s s
s s m i

s s s m
i

r

r
r

r

−

−

=
� (94) 

 
A similar discussion may also be performed for wi

k1k2...k(m-1). Rewrite (91) by substitution of 
(68), (74) and (80) in (91), 

( )
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 

(95) 
By inspection of (93), (94) and (95) it is obvious that calculation of ri

s1s2...sh and wi
s1s2...sh 

where 0<h≤m-1 which are necessary for h parameters regression may be derived from the m 
parameters model steps of computation. 
 
Property 3 

By any commutation for kj for j=1,...,m-1, values of ri
s1s2...s(m-1) defined by (92) for all 

i≠k1,k2,...,k(m-1) remain unchanged. This calculation can be made by deleting the suitable 
terms in (93) and (94) after taking common denominator. Because of this property, we can 
commute for the values of k1,...,k(m-1) in the process of computation without changing the 
value of ri

s1...s(m-1).

Property 4 
By any commutation for kj for j=1,...,m-1, values of wi

k1...k(m-1) for all i=1,...,n defined 
by (91) remain unchanged. This conclusion is made by multiplication of sequential 
parentheses of (97) and deleting the suitable terms. This property accompanying with 
property 3 guarantees that any commutation for k1,...,k(m-1) does not change the necessary 
items of (91) and (92) in computation of weighted median problem (90). 
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Property 5 
Value of rk(m-1)

s1...s(m-1) is equal to zero.  By substituting i=k(m-1) in (93) or (94) this 
property is concluded. Since, this term is equal to zero we should be aware of divide check 
(dividing by zero) in the process of computation of rk1

s1,rk2
s1s2,...,rk(m-1)

s1s2...s(m-1).

Property 6 
Values of wh

k1k2...k(m-1)=0 for all h=k1,k2,...,k(m-1). If h is equal to one of the 
k1,k2,...,k(m-1), then one of the parentheses of (95) is equal to zero and this property is 
assured. According to this property to avoid divide check, without computing wh

k1k2...k(m-1) for 
h=k1,k2,...,k(m-1) we can set these terms equal to zero. 
 
Property 7 

By any commutation for kj for j=1,...,(m-1), the Mth point derived by minimizing (89) 
remains unchanged. Because, by this commutation values of ri

s1s2...s(m-1) and wi
k1k2...k(m-1) 

remain unchanged (properties 3,4,5 and 6). 
 
Property 8 

Updating procedure to evaluate different subsets of sample observations can be 
simply done by assigning zero values to their wh

k1k2...k(m-1) in (90) for deleting points.  This 
makes those unwanted points h's be unaffected in calculation. 
 
Property 9 

According to properties 6 and 8, since the value of wh
k1k2...k(m-1)=0 for all 

h=k1,k2,...,k(m-1); the point M which derives from solving weighted median problem (90) 
will not be equal to k1,k2,...,k(m-1). This property guarantees that when we enter an 
observation into the basis we do not find this point again in the same iteration. 
 
Property 10 

If all kj for j=1,...,m-1 are equal in starting time, no problem occurs in the process of 
computation, but the execution time may be increased. Conversely if the kj points are 
selected in such a way that they are near the minimum of S, the algorithm converges to the 
optimal solution with less iterations. 
 
Property 11 

Values of wi
k1k2...k(m-1) and ri

s1s2...s(m-1) which are essential to solve the weighted median 
problem of (90) can be retrieved from their values in the previous iteration. That is when the 
point kh is discarded from the basis and replaced by kj, values of wi

k1k2...k(h-1) and ri
s1s2...s(h-1) do 

not change and need not be computed again. Applying this property to algorithm 4 makes it 
more efficient. 
 
Property 12 

Since at each iteration, values of ri
s1s2...s(m-1) and wi

k1k2...k(m-1) should be computed from 
the source input data y and X, rounding error does not accumulate and convergence does not 
perturb. This property makes the algorithm safe from accumulation of rounding error which 
exists in simplex-type algorithms. 
 
property 13 

When m optimal points are reached, the optimal values of ßj^ for j=1,...,m can be 
computed as a recursive system of equations efficiently. Values of ßj^ will be, 
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(96) 

The recursive system of equations (96) can be obtained as follows. Solve (67) and (68) for yi
and xji, j=1,2,3; and substitute them into (66), gives 
 n

Sk1 = Σ │yi
k1-ß1x1i

k1-ß2x2i
k1-ß3x3i

k1-(yk1-ß0-ß1x2k1-ß3x3k1)│ (97) 
 i=1 
Since we force the regression to pass through the point k1, the expression inside the 
parentheses of (97) is equal to zero. Hence, 
 yk1-ß0-ß1x2k1-ß3x3k1 = 0                                                                                                     (98) 
We can solve (73) and (74) again for yi

s1 and xji
s1, where, j=2,3 and substitute them into (72) 

which leads to the following objective function, 
 n

Sk1k2 = Σ │x1i
k1││yi

k2-ß2x2i
k2-ß3x3i

k2-(yk2
s1-ß1-ß2x2k2

s1-ß3x3k2
s1)│ (99) 

 i=1                                                      
By a similar discussion on (97) we have, 
 yk2

s1-ß1-ß2x2k2
s1-ß3x3k2

s1 = 0                                                                                            (100) 
Similarly we can derive, 
 n

Sk1k2k3 = Σ │x1i
k1x2i

k2││yi
k3-ß3x3i

k3+(yk3
s2-ß2-ß3x3k3

s2)│ (101) 
 i=1                                                      
and based on (101), 
 yk3

s2-ß2-ß3x3k3
s2 = 0                                                                                                         (102) 

Finally, by solving weighted median problem (83) we find a point M which gives, 
 ß3 = yM

s3 (103) 
Equations (103), (102), (100) and (98) can be solved sequentially for ß3^,...,ß0^. In a similar 
fashion the general solution for m parameters model is given by (96). 

Now let us use these properties and give the computational steps of algorithm 4 more 
expository in the following BL1 program. 
 
PROGRAM BL1 
Step 0) Initialization. 
 Parameter: n, m, m1=m-1, m2=m-2. 
 Real: y(n), x(n,m1), xsk(m1), yw(n), xkw(n), w(n), ys(n), xs(n,m1), b(m), xw(n,2:m1), 

ysol(m1), xsol(m1,m1). 
 Integer: l(n), kk(m1). 
 Common: /c1/i1,i2. 
 Read: (y(i),(x(i,j),j=1,m1),i=1,n). 
 Let: iter=0, kr=0, mm=1, (kk(j)=arbitrary,j=1,m1). 
Step 1) Refill working arrays. 
 Do loop for i=1,n: ys(i)=y(i), do loop for j=1,m1: xs(i,j)=x(i,j), end do, end do. 
Step 2) Store weights and ratios for next iteration. 
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 Do loop for i=1,n: w(i)=xkw(i), ys(i)=yw(i), do loop for j=1,m1: xs(i,j)=xw(i,j), end do, 
end do. 

Step 3) Compute the arguments for weighted median. 
 a. Set: jj=mm, k=kk(jj), ysk=ys(k), i1=1, i2=k-1. 
 Do loop for j=jj,m1: xsk(j)=xs(k,j), end do. 
 b. Do loop for j=jj,m1: call COL1(xsk(j),xs(1,j)) end do. 
 Call COL2(ysk,jj,w,ys,xs(1,jj)). 
 If i2=n go to step 3.c; otherwise set: i1=k+1, i2=n, go to step 3.b. 
 c. Set: w(k)=0. 
 If jj=m1 go to step 4; otherwise i1=1, i2=k-1, go to step 3.d. 
 d. Do loop for j=jj+1,m1: call COL3(xs(1,j),xs(1,jj)), end do. 
 If i=n go to step 3.e; otherwise i1=k+1, i2=n, go to step 3.d. 
 e. If jj≠mm jj=jj+1, go to step 3, otherwise do loop for i=1,n: xkw(i)=w(i), yw(i)=ys(i); do 

loop for j=jj+1,m1: xw(i,j)=xs(i,j), end do; end do. 
 Set: jj=jj+1, go to step 3. 
Step 4) Compute the weighted median. 
 Set: ys(k)=0, iter=iter+1, lm=LWMED(n,ys,w,l). 
Step 5) Test for optimality. 
 If lm=kr go to step 5.b; otherwise iopt=0 go to step 5.a. 
 a. If mm=m1 set mm=1, kr=kk(mm), kk(mm)=lm, go to step 1; otherwise 
 set mm=mm+1, kr=kk(mm), kk(mm)=lm, go to step 2. 
 b. Set: iopt=iopt+1. 
 If iopt≠m1 go to step 5.a, otherwise go to step 6. 
Step 6) Compute the solution. 
 Set: b(m)=ys(lm). 
 Do loop for i=1,m1: ysol(i)=y(kk(i)); do loop for j=1,m1: xsol(i,j)=x(kk(i),j), end do; 

end do. 
 Set: jj=1. 
 a. Set: ysk=ysol(jj). 
 Do loop for j=jj,m1: xsx(j)=xsol(jj,j), end do. 
 Do loop for i=jj,m1: if i=jj go to continue; otherwise 
 ysol(i)=ysol(i)-ysk, do loop for j=jj,m1: xsol(i,j)=xsol(i,j)-xsk(j), end do; 
 set ysol(i)=ysol(i)/xsol(i,jj), continue, end do. 
 b. Do loop for i=jj,m1: if i=jj go to continue, otherwise, do loop for 
 j=jj+1,m1: xsol(i,j)=xsol(i,j)/xsol(i,jj), end do; continue; end do. 
 c. If jj=m2 go to step 6.d; otherwise go to step 6.a. 
 d. Do loop for i=1,m2: k=m-i, s=ysol(k); do loop for j=k,m1, 
 s=s-b(j+1)*xsol(k,j) end do, b(k)=s, end do. 
 Set: s=y(kk(1)). 
 Do loop for j=1,m1: s=s-b(j+1)*x(kk(1),j), b(1)=s, end do. 
 Print: ((b(j),j=1,m),(kk(j),j=1,m1),lm,iter). 
 Stop. 
END 
 

The major portion of computation in this program is transformation of two 
dimensional arrays. Passing columns of these arrays to other subroutines which involves only 
one dimensional arrays saves the time of computation (see, Barrodale and Roberts (1974)). 
Subroutine COL1, COL2 and COL3 have been coded to do this task for subtraction, 
multiplication and division, and for only division respectively. Function LWMED which is 
used to compute weighted median has been introduced in section 2.1. 
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SUBROUTINE COL1(v1,v2) 
Step 0) Initialization 
 Real: v2(1). 
 Common /c1/i1,i2. 
Step 1) Subtraction. 
 Do loop for i=i1,i2: v2(i)=v2(i)-v1, end do. 
 Return. 
END 
 
SUBROUTINE COL2(ysk,jj,v1,ys,v2) 
Step 0) Initialization. 
 Real: v1(1),v2(1),ys(1). 
 Common /c1/i1,i2. 
Step 1) Compute weights and ratios. 
 If jj≠1 go to step 1.a,; otherwise do loop for i=i1,i2: 
 v1(i)=v2(i), ys(i)=(ys(i)-ysk)/v2(i). 
 Return. 
 a. Do loop for i=i1,i2: v1(i)=v1(i)*v2(i), ys(i)=(ys(i)-ysk)/v2(i), 
 end do. 
 Return. 
END 
 
SUBROUTINE COL3(v1,v2) 
Step 0) Initialization. 
 Real: v1(1),v2(1),ys(1). 
 Common /c1/i1,i2. 
Step 1) Division. 
 Do loop for i=i1,i2: v1(i)=v1(i)/v2(i), end do. 
 Return. 
END 
 
4.4 Initial value problem 

Selection of the arbitrary points k1,k2,...,k(m-1) at the first stage of computation has 
important role in number of iterations necessary to reach the optimal solution. One way to 
select these m-1 points may be based on applying another estimator to guess those points 
which their residuals are smallest in absolute values among all estimated residuals.  That is 
one estimator for example least squares is applied on the data and smallest m-1 residuals in 
absolute values are selected and the corresponding points to these residuals are nominated for 
starting algorithms 1, 2, 3 or 4. However, we examined this procedure for algorithms 2 and 4 
and found that it makes them more efficient. 

In the process of this study we found some points which might be leading to develop 
the field of L1 norm computation. In the proposed algorithm 4, we could not find a criterion 
to delete that observation from the current set of observations in the basis which reduces the 
objective function value more than other points. If anyone finds a criterion like the heuristic 
method of Bloomfield and Steiger (1980), number of iterations will decrease very much and 
will reduce computation time. 

The main obstacle to apply discrete differentiation technique to operational problems, 
is reordering of the residuals in descending order before starting computation. If this obstacle 
is removed, a similar algorithm to that of simple restricted linear regression for multiple 
regression may be proposed. 
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