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Comparative Study of the L1 Norm Regression Algorithms 
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Abstract: 
 This paper tries to compare more accurate and efficient L1 norm regression algorithms. Other 
comparative studies are mentioned and their conclusions are discussed. Many experiments have 
been performed to evaluate the comparative efficiency and accuracy of the selected algorithms. 
 

1. Introduction 
 The objective of this paper is to compare some of the existing algorithms for the L1 norm 
regression with those proposed by Bidabad (1989a,b). Our point of view is to compare the 
accuracy and relative efficiencies of them. In this respect accuracy of the solution of the 
algorithms is more important than the other criteria. By the term accuracy we mean, reaching 
the correct solution in finite number of steps or iterations. By efficiency, we mean that the 
algorithm performs with smaller amount of required storage and execution time to reach 
accurate optimal solution. 
 Generally, the comparison of algorithms is not a straightforward task. As it is indicated by 
Dutter (1977), factors such as quality of computer codes and computing environment should be 
considered. In the case of the L1 norm algorithms, three specific factors of number of 
observations, number of parameters and the condition of data are more important. Kennedy and 
Gentle and Sposito (1977a,b), and Hoffman and Shier (1980a,b) describe methods for 
generating random test data with known L1 norm solution vectors. Gilsinn et al (1977) discuss a 
general methodology for comparing the L1 norm algorithms. Kennedy and Gentle (1977) 
examine the rounding error of L1 norm regression and present two techniques for detecting 
inaccuracies of the computation (see also, Larson and Sameh (1980)). 
 Many authors have compared their own algorithms with those already proposed. Table 1 
gives a summary of the characteristics of the algorithms proposed by different authors. It is 
important to note that since the computing environment and condition of data with respect to 
distribution of the regression errors of the presented algorithms by table 1 are not the same, 
definitive conclusion and comparison should not be drawn from this table. 
 Armstrong and Frome (1976a) compare the iterative weighted least squares of 
Schlossmacher (1973) with Barrodale and Roberts (1973) algorithm. The result was high 
superiority of the latter. Anderson and Steiger (1980) compare the algorithms of Bloomfield and 
Steiger (1980), Bartels and Conn and Sinclair (1978) and Barrodale and Roberts (1973). It was 
concluded that as number of observations n increases the BR locates in a different complexity 
class than BCS and BS. All algorithms are linear in number of parameters m, and BS is less 
complex than BCS. Complexities of BS and BCS are linear in n. There is a slight tendency for 
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all algorithms to work proportionately harder for even m than for odd m. BR and BS had the 
most difficulty with normal error distribution and the least difficulty with Pareto distribution 
with corresponding Pareto density parameter equal to 1.2. 
 
Table 1. Summary of the characteristics of the existing algorithms. 
ref. Compared with m range n range Time/performance 
BCS BR      2-8   201       roughly equal speed                  
AFK BR      5-20  100-1500 30%-50% AFK is faster                
A BR      1-11  15-203    nearly equal speed                   
BS   BR      2-6   100-1800 BS is faster for larger n            
W AFK,AK  2-25  100-1000 W is faster for larger n & smaller m
SS   BS      4-34  10-50     SS is faster for m near n            
AK S       2     50-500    AK is faster                         
JS Ak  2     10-250    JS is faster                         
n ≡number of observations. 
m ≡number of parameters. 
BCS≡Bartels,Conn,Sinclair(1978). 
BR ≡Barrodale,Roberts(1973,74). 
AK ≡Armstrong,Kung(1978). 
S ≡Sadovski(1974). 

AFK≡Armstrong,Frome,Kung(1979). 
A ≡Abdelmalek(1980a,b). 
BS ≡Bloomfield,Steiger(1980). 
W ≡Wesolowsky(1981). 
JS ≡Josvanger,Sposito(1983). 
SS ≡Seneta,Steiger(1984). 

 
Gentle and Narula and Sposito (1987) performs a rather complete comparison among some 

of the L1 norm algorithms.  They limited this comparison to the codes that are openly available 
for L1 norm linear regression of unconstrained form. Table 2 shows the required array storage 
and stopping constants of the corresponding algorithms.  
 
Table 2. Array storage requirement for selected algorithms. 
Program name Ref. required array storage  stopping constants                
L1 BR   

 
3n+m(n+5)+4        
 

BIG=1.0E+75                        
TOLER=10**(-D+2/3)                 
D=No. of decimal digits of accuracy

L1 A 6n+m(n+3m/2+15/2)  
 

PREC=1.0E-6                        
ESP=1.0E-4                         

L1NORM   
 

AFK 6n+m(n+m+5)        
 

ACU=1.0E-6                         
BIG=1.0E+15                        

BLAD1    BS   4n+2m(n+2)         --------------------               
LONESL   
 

S 4n PREC=1.0E-6                        
BIG=1.0E+19                        

SIMLP    
 

AK   
 

4n                 
 

ACU=1.0E-6                         
BIG=1.0E+19                        

DESL1 JS   5n                 TOL=1.0E-6                         
See table 1 for abbreviations. 
Source: Gentle, Narula, Sposito (1987). 
 

In their study the problem consists of uniform (0,1) random values for X and normal (0,3) 
variates for random error term. The value of dependent variable y computed as sum of the 
independent variables and error term. Summary of the results is shown in tables 3 and 4 for 
simple and multiple regressions respectively. Values in the cells are the CPU time averages of 
100 replications and the values in the parentheses are corresponding maximum CPU time of the 
100 replications. Gentle and Sposito and Narula (1988) also compare the algorithms for 
unconstrained L1 norm simple linear regression. This investigation is essentially an extraction of 
Gentle and Narula and Sposito (1987). The attained results are completely similar. 
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They concluded that BS program performs quite well on smaller problems but in larger 
cases, because of accumulated round-off error it fails to produce correct answers. The 
Wesolowsky program was not usable and deleted in their study. Because of superiority of AFK 
to BR and AK to S which had been indicated in previous studies, BR and S algorithm did not 
enter in their study. 
 
Table 3. CPU time for simple model. 
 n AK    JS        A        AFK  BS    

100  0.021  0.023 0.094    0.034 0.023  
(0.03)  (0.04) (0.21)   (0.06) (0.04)  

500  0.193  0.302 1.434    0.287 0.145  
(0.38)  (0.61) (3.13)   (0.49) (0.26)  

1000  0.544  0.971 4.775    0.784 0.422  
(1.36)  (2.16) (10.60)   (1.76) (1.19)  

5000  1.262  2.837 211.23* 1.614 +
(24.58)  (48.88) (----)   (31.22) +

See table 1 for abbreviations. 
* Average of three runs. 
+ Failed to produce correct answers. 
Source: Gentle, Narula, Sposito (1987). 
 
Table 4. CPU time for multiple model (m=5,15). 
 n m A AFK BS 
100 5 0.331  (0.53) 0.149  (0.23)  0.114 (0.17) 
100 15 1.976  (2.73) 1.313  (1.70)  0.933 (1.38) 
500 5 3.686  (5.47) 1.120  (1.81)  0.829 (1.22) 
500 15 17.876 (23.4) 7.808  (10.1)  7.294 (9.13) 

1000 5 13.211 (18.3) 2.930  (4.38)       +  +        
1000 15 49.866 (72.7) 17.901 (24.0)       +  +        
5000 5 248.91* (----)  34.311 (51.8)       +  +        
5000 15 687.31* (----) 140.321 (160.1) + +

See table 1 for abbreviations. 
* Average of three runs. 
+ Failed to produce correct answers. 
Source: Gentle, Narula, Sposito (1987). 
 

By considering all aspects, they concluded that AFK seems to be the best. 
 
2. Design of experiments 
 Performance of every algorithm in any specific computing environment is different and thus 
makes the absolute comparison of algorithms very difficult, especially if the system uses, virtual 
or real storage, a cache or any array processor or mathematical co-processor and etc. As it was 
discussed by Bidabad (1989a,b), many algorithms exist for L1 norm regression with 
corresponding computer program and comparison of all of them is very costly. In order to 
reduce the number of experiments, we rely on the experience of previous researchers which 
were discussed above. However, the experiments are divided into two general categories of 
simple and multiple linear L1 norm regressions. 
 Despite of the coded computer programs, computing environment, numbers of observations 
and parameters of the model and "condition" of data are the major sources of comparisons for 
performances of algorithms. Thus different sizes problems are to be tested in this section.       
 To judge the superiority of algorithms there are many criteria. Accuracy and efficiency are 
basic ones. In the former, we are concerned with obtaining the true results in different samples 
and in the latter the computation time and storage requirement of the algorithms are compared. 
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To perform the experiments, once uniform random values selected for ßj in the following 
model, 
 m

yi = Σ βjxij + ui i=1,...,n                                                                                            (1) 
 j=1 
Random values generated for xij and ui with five specifications of distributions. Uniform and 
normal random generators (given by Mojarrad (1977)) used to generate three uniform and two 
normal sets of random data for each experiment. Generated uniform random deviates belong to 
the [-10,10], [-100,100] and [-1000,1000] intervals. Normal deviates have zero mean with 100 
and 1000 variances. Values of yi computed for ßj, xij, and ui which had been generated as 
explained above. Values of 20, 50, 100, 500, 1000, 2000, 5000 and 10000 were used for number 
of observations n and values of 2, 3, 4, 5, 7 and 10 selected for number of parameters m. 
 Hence, for all of the five specifications of distribution of ui, and for all m and n, a replication 
is done for each of the selected algorithms. Average and range of these five replications are 
reported for each m and n for each algorithm. In the case of simple regression number of 
replications is ten than five. 
 The programs were all complied by Fortran IV, VS compiler, 1.3.0 level (May 1983) and 77 
LANGLVL with 03 optimization level to reduce the coding inefficiencies. The programs were 
run on BASF 7.68 (MVS) computer. Since this machine is a multitasking system, swapping 
process should affect the execution time. When system is running for more than one job, this 
effect can not be measured and removed completely. In order to filter the swapping time, 
Service Request Block (SRB) time has been reduced from the total Central Processing Unit 
(CPU) time. However, when system is busy this may not exhaust all the swapping times. It has 
been tried to run all comparable algorithms simultaneously, and also in one class of input with 
enough initiators and the same priority level to cause similar situations for all comparable 
submitted jobs. The pre-execution times of compilation and linkage-editor are excluded from all 
tested programs. 
 
3. Comparison of the simple regression L1 norm algorithms 
 In this study comparisons are limited to the algorithm 2 of Bidabad (1989a,b) and that 
proposed by Josvanger and Sposito (1983). Gentle and Narula and Sposito (1987) and Gentle 
and Sposito and Narula (1988) introduced the latter as the most efficient algorithm for simple 
linear L1 norm regression. 
 
Table 5. Array storage requirement for simple model selected algorithms 
Algorithm Program name Storage requirement Stopping constant
Js DESL1 5n TOL = 1.0E-6 
B (Alg.2) BL1S 5n ------------ 
Js       ≡ Josvanger and Sposito (1983). 
B(Alg.2) ≡ Bidabad (1989a,b) Algorithm 2. 
n ≡ Number of observations. 
 

The amount of array storage requirement for these two programs are shown by table 5. This 
table may be compared with table 2 for other algorithms. None of the programs destroys the 
input data. Both programs have been coded in single precision.  
 Table 6 shows the results of the experiments for simple linear L1 norm regression. The 
values reported in the cells of the table are the averages of ten replications CPU times in 
seconds with different random samples. The values in the parentheses are the corresponding 
minimum and maximum CPU times of the ten runs. Both algorithms converged and gave 
accurate results for all of the experiments. 
 As it is clear from table 6 in small samples the computation times are not very different, 
though algorithm 2 is faster. In medium samples, this difference becomes significant and in 
larger samples, algorithm 2 becomes strongly superior to that of Josvanger and Sposito (1983).  
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Thus it can be concluded that algorithm 2 performs better than the other algorithms and may be 
used for applied work to achieve more efficiency. 
 
Table 6. CPU times for simple model 

 L1 norm selected algorithms 
 n JS        B(Alg.2)     

20           0.096             0.094      
(0.09,0.10)  (0.09,0.10)   

50           0.109             0.106      
(0.10,0.11)  (0.10,0.11)   

100           0.141             0.132      
(0.13,0.16)  (0.12,0.14)   

500           0.469             0.360      
(0.35,0.59)  (0.33,0.38)   

1000 0.997             0.645      
(0.66,1.31)  (0.61,0.69)   

2000 2.770             1.194      
(1.36,4.27)  (0.98,1.28)   

5000 11.554             2.848      
(4.58,18.91) (2.71,3.15)   

10000 42.406             5.823      
(9.67,60.88) (5.16,6.87)   

See table 5 for abbreviations. 
 
4. Comparison of the multiple regression L1 norm algorithms 
 To compare algorithm 4 of Bidabad (1989a,b) with other algorithms, experiments have been 
limited to three algorithms which are more accurate and efficient among the others. These are 
algorithms of Barrodale and Roberts (1973,74) (BR), Bloomfield and Steiger (1980) (BS), 
Armstrong and Frome and Kung (1979) (AFK). Although, BS and AFK algorithms are faster 
than BR, the reason to select BR algorithm was that the other two algorithms failed to produce 
correct answers for larger samples (see, Gentle and Narula and Sposito (1987)). 
 The amount of array storage requirement for these programs are indicated by table 7. This 
table may be compared with table 2 for other algorithms. All programs have been coded in 
single precision. None of the programs destroys input data. 
 
Table 7. Array storage requirement for multiple model selected algorithms 
Algorithm Program name Storage requirement Stopping constant
AFK AFKL1 6n+m(n+3m/2+15/2) ACU = 1.0E-6   

BIG = 1.0E+15 
BR L1BAR 3n+m(n+5)+4 BIG = 1.0E+75 
BS BLOD1 4n+m(2n+4) ------------- 
B (Alg.4) BL1 2n+m(3n+m+2)-2 ------------- 
AFK      ≡ Armstrong and Frome and Kung (1970). 
BR       ≡ Barrodale and Roberts (1973,74). 
BS       ≡ Bloomfield and Steiger (1980). 

B(Alg.4) ≡ Bidabad (1989a,b) Algorithm 4. 
n ≡ Number of observations. 
m ≡ Number of parameters. 

 
Tables 8 through 12 report the averages of five runs CPU times for different sample sizes 

and parameters. The values in the parentheses are minimum and maximum CPU times of 
replications. For the three parameters model, as it can be seen from table 8, the algorithm 4 is 
superior to other algorithms. In this case the BS, AFK, and BR possess less efficiency 
respectively. When the sample size is small, the difference is not large. In medium sample sizes 
this difference is going to increase. In larger size experiments, algorithm 4 and BS have small 
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difference, but BR and AFK are far from them. In all cases algorithm 4 is faster than the other 
algorithms.  
 
Table 8. CPU times for multiple model (m=3) selected algorithms 
 n B(Alg.4)         BR            BS           AFK       

20     0.098         0.110         0.104         0.112     
(0.09,0.10)   (0.11,0.11)  (0.10,0.11)   (0.11,0.12)   

50     0.144         0.148         0.146         0.146     
(0.13,0.16)   (0.14,0.16)  (0.13,0.16)   (0.14,0.15)   

100     0.182         0.216         0.194         0.214     
(0.18,0.19)   (0.20,0.23)  (0.19,0.20)   (0.20,0.23)   

500     0.698         1.116         0.810         0.986     
(0.63,0.74)   (1.07,1.17)  (0.63,1.00)   (0.85,1.11)   

1000     1.390         2.420         1.662         2.180     
(1.27,1.53)   (2.16,2.76)  (1.37,2.01)   (2.01,2.36)   

2000     2.812         5.884         2.932         4.800     
(2.34,2.99)   (4.98,6.63)  (2.81,3.18)   (4.30,5.09)   

5000     7.456        25.038         7.520        20.172     
(6.82,9.03)  (22.33,27.54) (6.16,10.12() (16.57,22.33)

10000 14.330        80.008        15.434        59.634     
(12.45,16.61) (73.16,87.03) (12.88,18.12) (55.60,65.80)

See table 7, for abbreviations. 
 

In the case of four parameters model as shown by table 9, though BS algorithm is competing 
with algorithm 4, this ordering remains unchanged and algorithm 4 is again most efficient. The 
ranking of the selected algorithms are similar to that of three parameters experiments in all cases 
of small, medium and larger sample sizes. 
 
Table 9. CPU times for multiple model (m=4) selected algorithms 
 n B(Alg.4)         BR            BS           AFK       

20     0.112         0.116           0.116         0.116       
(0.11,0.12)   (0.11,0.12)    (0.11,0.12)   (0.11,0.12)     

50     0.156         0.168           0.160         0.160       
(0.15,0.16)   (0.16,0.19)    (0.15,0.17)   (0.16,0.16)     

100     0.284         0.286           0.286         0.286       
(0.26,0.32)   (0.26,0.30)    (0.27,0.30)   (0.26,0.30)     

500     1.098         1.596           1.260         1.394       
(0.85,1.44)   (1.23,1.77)    (0.92,1.58)   (1.17,1.71)     

1000     2.194         4.016           2.200         3.022       
(2.03,2.45)   (3.35,5.05)    (0.64,3.28)   (2.73,3.21)     

2000     4.650        10.636           5.430         7.774       
(3.92,5.05)   (9.44,11.86)   (4.54,6.15)   (7.25,8.16)     

5000    12.852        41.282          12.938        32.110       
(10.00,15.23) (32.40,47.86)   (11.62,14.04) (29.55,33.17)   

10000 27.720       119.152          27.864       101.472       
(22.93,39.14) (107.14,129.70) (23.94,32.10) (100.31,103.15)

See table 7, for abbreviations. 
 

When number of parameters increased to five, BS algorithm failed to produce correct 
answers for sample sizes of 2000 and more. Gentle and Narula and Sposito (1987) also referred 
to failure of BS algorithm for sample sizes of 1000 and greater for five and more parameters 
models and for sample size of 5000 when the number of parameters are two. With reference to 
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table 10, efficiency of algorithm 4 to others with respect to failure of BS is clear. The algorithms 
of AFK and BR are in the next positions respectively. For smaller sample size, BR, BS and 
AFK algorithms are competing, but the differences are very small. In larger sample size, 
algorithm 4 becomes strictly superior to other algorithms. 
 
Table 10. CPU times for multiple model (m=5) selected algorithms 
 n B(Alg.4)         BR            BS           AFK       

20     0.138         0.124           0.124        0.124      
(0.13,0.15)   (0.12,0.13)    (0.12,0.14) (0.11,0.13)    

50     0.208         0.240           0.204        0.188      
(0.18,0.24)   (0.22,0.26)    (0.20,0.21) (0.18,0.20)    

100     0.348         0.380           0.404        0.338      
(0.33,0.37)   (0.34,0.42)    (0.36,0.46) (0.32,0.36)    

500     2.024         2.498           1.754        1.684      
(1.57,2.40)   (2.29,2.68)    (1.34,2.01) (1.57,1.78)    

1000     3.702         5.684           3.364        3.876      
(3.19,4.45)   (4.86,6.28)    (2.93,3.71) (3.67,4.13)    

2000     8.770        15.500            +           9.120      
(7.51,9.41)  (13.04,16.58)        +       (7.91,9.93)    

5000    24.418        66.394            +          36.600      
(20.15,27.96) (59.93,71.90)        +       (33.95,38.67)  

10000 53.924       244.072            +         108.406      
(38.35,64.90) (217.81,270.06) + (99.65,119.75)

+ Failed to compute correct answers. 
See table 7, for abbreviations. 
 
Table 11. CPU times for multiple model (m=7) selected algorithms 
 n B(Alg.4)         BR            BS           AFK       

20     0.160           0.164           0.156        0.160       
(0.16,0.16)     (0.16,0.17)    (0.15,0.16) (0.15,0.17)     

50     0.346           0.302           0.328        0.282       
(0.29,0.37)     (0.29.0.31)    (0.31,0.34) (0.26,0.30)     

100     0.706           0.572           0.540        0.530       
(0.58,0.81)     (0.52,0.65)    (0.48,0.62) (0.47,0.62)     

500     3.898           4.486           3.202        2.990       
(3.25,4.54)     (4.03,4.85)    (2.41,3.87) (2.45,3.48)     

1000     9.178          11.448            +           6.568       
(7.03,10.44)    (9.88,12.71)        +       (5.87,7.68)     

2000    19.984          31.872            +          14.908       
(18.06,21.55)   (24.52,35.22)        +       (13.56,16.23)   

5000    57.286         141.234            +          58.314       
(49.53,64.24)   (129.20,154.03) + (49.12,65.17)   

10000 130.79          475.826            +         151.526       
(103.20,183.45) (421.40,521.39) + (144.94,165.62)

+ Failed to compute correct answers. 
See table 7, for abbreviations. 
 

In table 11 when number of parameters is seven, BS algorithm failed to compute correct 
answer for sample of sizes 1000 and more. AFK is the best for smaller samples, but for large 
samples, algorithm 4 is again superior. BR algorithm is in the third position. 
 In table 12, with ten parameters, BS and AFK algorithms failed to compute correct answers 
for larger sample size. BR algorithm is the most efficient with respect to accuracy.  Algorithm 4 
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remains in the second position of both computing time and accuracy, except for sample size of 
10000, where algorithm 4 is the most efficient. 
 
Table 12. CPU times for multiple model (m=10) selected algorithms 
 n B(Alg.4)         BR            BS           AFK       

20     0.276            0.212            0.218        0.212    
(0.27,0.29)      (0.20,0.23)     (0.21,0.22) (0.20,0.23)  

50     0.956            0.502            0.492        0.398    
(0.69,1.72)      (0.47,0.54)     (0.43,0.54) (0.35,0.44)  

100     2.414            1.144            0.998        0.776    
(1.55,4.78)      (1.03,1.25)     (0.86,1.11) (0.66,0.91)  

500    13.980            8.446            5.970        5.210    
(11.76,16.30)     (7.88,9.99)     (4.81,6.92) (4.43,5.78)  

1000    62.624           23.506             +          11.144    
(22.23,193.19)   (20.26,26.93)         +       (9.08,13.14)

2000   109.268           62.756             +            +       
(72.20,278.27)   (59.43,65.66)         +            +       

5000   409.438          284.618             +            +       
(154.64,1010.92) (240.02,322.47)       +            +       

10000 679.540          967.794             +            +       
(283.04,1076.04) (770.79,1064.43) + +

+ Failed to compute correct answers. 
See table 7, for abbreviations. 
 
5. Conclusions 
 Since in computational algorithms, accuracy is more important than efficiency, those L1
norm algorithms should be selected which produce correct solutions and among them, the 
fastest one should be selected. Algorithm 2 and algorithm of Josvanger and Sposito (1983) both 
computed correct answers for two parameters linear L1 norm regression model. Algorithm 2 
which is faster than JS introduced for applied works. 
 For multiple regression, BS and AFK algorithms failed to compute correct answers in larger 
models. As stated by Gentle and Narula and Sposito (1987), because of the accumulated 
roundoff error, algorithm of Bloomfield and Steiger (1980) was not usable in larger size 
problems. Coding to avoid rounding problems often increase the execution time, so it is not 
clear what would happen to the relative efficiency if the BS code is modified. This is also the 
case for algorithm of Armstrong and Frome and Kung (1979), though it is less sensitive to 
rounding error than BS algorithm. However, from the previous tables it may be concluded that 
algorithm 4 is more appropriate for models with less than ten parameters and algorithm of 
Barrodale and Roberts (1973,74) for the ten parameters model. This last conclusion is not very 
constructive, because in the case of ten parameters model with 10000 observations algorithm 4 
is highly superior to BR.  However, since in applied work we are not always confronted with 
very large amount of data and parameters, this conclusion is poor in operational sense. 
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