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Abstract 
 This paper gives a rather general review of the L1 norm algorithms. The chronology and 
historical development of the L1 norm estimation theory for the period of 1632-1928 will be 
surveyed and the algorithms belonging to the after 1928 period will be categorized into three 
main classes of direct descent, simplex type and other algorithms. 
 

Historical development (1632-1928)  
 The origin of L1 norm estimation may be traced back to Galilei (1632). In determining the 
position of a newly discovered star, he proposed the least possible correction in order to 
obtain a reliable result (see, Ronchetti (1987) for some direct quotations). Boscovich (1757) 
for the first time formulated and applied the minimum sum of absolute errors for obtaining 
the best fitting line given three or more pairs of observations for a simple two variable 
regression model. He also restricts the line to pass through the means of the observation 
points. That is,  
 n

min :  Σ │yi-ß0-ß1xi1│
ß0,ß1 i=1 

 n (1) 
 s.to:  Σ (yi-ß0-ß1xi1)=0 
 i=1 
 Boscovich (1760) gives a simple geometrical solution to his previous suggestion. This 
paper has been discussed by Eisenhart (1961) and Sheynin (1973). In a manuscript Boscovich 
poses the problem to Simpson and Simpson gives an analytical solution to the problem (see, 
Stigler (1984)). 
 Laplace (1793) provides an algebraic formulation of an algorithm for the L1 norm 
regression line which passes through the centroid of observations. In Laplace (1799), 
extension of L1 norm regression to observations with different weights has also been 
discussed. Prony (1804) gives a geometric interpretation of Laplace's (1799) method and 
compares it with other methods through an example. Svanberg (1805) applies Laplace's 
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method in determining a meridian arc and Von Lindenau (1806) uses this method in 
determination of the elliptic meridian. 
 Gauss (1809) suggests the minimization of sum of absolute errors without constraint. He 
concludes that this criterion necessarily sets m of the residuals equal to zero, where m is 
number of parameters and further, the solution obtained by this method is not changed if the 
value of dependent variable is increased or decreased without changing the sign of the 
residual. This conclusion, is recently discussed by Narula and Wellington (1985). He also 
noted that Boscovich or Laplace estimators which minimize the sum of absolute residuals 
with zero sum of residuals constraint, necessarily set m-1 of the residuals equal to zero (see, 
Stigler (1981), Farebrother (1987b)). 
 Mathieu (1816) used Laplace's method to compute the eccentricity of the earth. Van 
Beeck-Calkoen (1816) advocates the using of the least absolute values criterion in fitting 
curvilinear equation obtained by using powers of the independent variable. 
 Laplace (1818) adapted Boscovich's criterion again and gave an algebraic procedure (see, 
Farebrother (1987b)). Let 1x and y be the means of xi1 and yi then,  
 ß0 = y - ß1 1x (2) 
Value of ß1 is found by, 
 n

min: S = Σ │yi~ - ß1xi1~│ (3) 
 ß1 i=1 
where xi1~ and yi~ are deviations of xi1 and yi from their means respectively. By rearranging 
the observations in descending order of yi~/xi1~ values, Laplace notes that S is infinite when 
ß1 is infinite and decreases as ß1 is reduced. ß1 reaches the critical value yt~/xt1~ when it again 
begins to increase. This critical value of ß1 is determined when, 
 t-1                    n                    t 
 Σ │xi1~│ < ½ Σ │xi1~│ ≤ Σ │xi1~│ (4) 
 i=1                  i=1               i=1 
This procedure to find ß1 is called weighted median, and has been used in many other 
algorithms such as Rhodes (1930), Singleton (1940), Karst (1958), Bloomfield and Steiger 
(1980), Bidabad (1987a,b,88a,b,89a,b) later. Bidabad (1987a,88a,89a,b) derives the condition 
(4) via discrete differentiation method. 
 Fourier (1824) formulates least absolute residuals regression as what we would now call 
linear programming; that is minimization of a linear objective function subject to linear 
inequality constraints.  
 Edgeworth (1883) presents a philosophical discussion on differences between minimizing 
mean square errors and mean absolute errors. Edgeworth (1887a,b) proposed a simple 
method for choosing the regression parameters. By fixing m-1 of the parameters, he used 
Laplace's procedure to determine the optimal value of the remaining parameter. Repeating 
this operation for a range of values for m-1 fixed parameters he obtained a set of results for 
each of m possible choices of the free parameters. Edgeworth drops the restriction of passing 
through the centroid of data. Turner (1887) discusses the problem of non unique solutions 
under the least absolute error criterion as a graphical variant of Edgeworth (1887a) as a 
possible drawback to the method. Edgeworth (1888) replies to Turner's criticism by 
proposing a second method for choosing the two parameters of least absolute error regression 
of a simple linear model which makes no use of the median loci of his first method. 
Edgeworth, in this paper, followed Turner's suggestion for graphical analysis of steps to reach 
the minimum solution. 
 Before referring to double median method of Edgeworth (1923), it should be noted that 
Bowley (1902) completes the Edgeworth's (1902) paper by a variant of double median 
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method which presented after him by Edgeworth (1923). This variant ignores the weights 
attached to errors.  
 Edgeworth (1923) discussed the more general problem of estimating the simple linear 
regression parameters by minimizing the weighted sum of the absolute residuals. He restates 
the rationale for the method and illustrates its usage through several examples. He also 
considers the non unique solution problem. His contribution is called double median method. 
 Estienne (1926-28) proposes replacing the classical theory of errors of data based on least 
squares with what he calls a rational theory based on the least absolute residual procedure. 
Bowley (1928) summarizes the Edgeworth's contributions to mathematical statistics which 
includes his work on L1 norm regression. Dufton (1928) also gives a graphical method of 
fitting a regression line. 
 Farebrother (1987b) summarizes the important contributions to L1 norm regression for the 
period of 1793-1930. For more references see also Crocker (1969), Harter 
(1974a,b,75a,b,c,76), Dielman (1984). Up to 1928, all algorithms had been proposed for 
simple linear regression. Though some of them use algebraic propositions, are not so 
organized to handle multiple L1 norm regression problem. In the next section we will discuss 
the more elaborated computational methods for simple and multiple L1 norm regressions not 
in a chronological sense; because many digressions have been occurred. We may denote the 
period of after 1928 the time of modern algorithms in the subject of L1 norm regression. 
 
Computational algorithms 
 Although, a closed form of the solution of L1 norm regression has not been derived yet, 
many algorithms have been proposed to minimize its objective function (see, Cheney (1966), 
Chambers (1977), Dielman and Pfaffenberger (1982,84)). Generally, we can classify all L1
norm algorithms in three major categories as, 
i)   Direct descent algorithms 
ii)  Simplex type algorithms 
iii) Other algorithms 
which will be discussed in the following sections sequentially. 
 
Direct descent algorithms 
 The essence of the algorithms which fall within this category is finding an steep path to 
descend down the polyhedron of the L1 norm regression objective function. Although the 
Laplace's method (explained herein before) is a special type of direct descent algorithms; 
origin of this procedure in the area of L1 norm can be traced back to the algorithms of 
Edgeworth which were explained in the previous section.  
 Rhodes (1930) found Edgeworth's graphical solution laborious, therefore, he suggested an 
alternative method for general linear model which may be summarized as follows (see, 
Farebrother (1987b)). Suppose, we have n equations with m<n unknown parameters. To find 
L1 norm solution of this overdetermined system of equations; 
Step 1) Select m-1 equations arbitrarily. 
Step 2) Solve these equations for m-1 parameters. 
Step 3) Estimate the remaining mth parameter by the Laplace's method. 
Step 4) Recognize the resulting equation in step 3 and add it to the m-1 equations in step 1. 
Step 5) If the set of m equations has recurred m times then stop; otherwise discard the oldest 
 equation and go to step 2. 
Rhodes (1930) explained his algorithm by an example and did not give any proof for 
convergence. Bruen (1938) reviews the L1 norm regression methods presented by earlier 
authors. He also compares L1, L2 and L∞ norms regressions. 
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Singleton (1940) applied Cauchy's steepest descent method (see, Panik (1976)) for the 
general linear L1 norm regression. In this paper a geometrical interpretation of gradient on L1
norm polyhedron and some theorems about existence and uniqueness of solution and 
convexity property all were given. Although the paper has not been clearly written, the 
following steps summarize his algorithm. 
Step 1) Select a point ßj(0), j=1,...,m arbitrarily. 
Step 2) Determine the gradient, 
 n

gj
(0)=-Σ sgn(ui^│ßj

(0),j=1,...,m)xij.
i=1                  m                         m 

Step 3) Compute, wi
(0)= Σ xijgj

(0), zi
(0)=yi- Σ xijßj

(0).
j=1                       j=1                     n 

Step 4) Determine the value of t(0) as weighted median of Σ │wit-zi│ by Laplace's method.  
 i=1 
 The t value is the length of movement along direction of the gradient. 
Step 5) Compute ßj

(1)=ßj
(0)+gj

(0)t(0).
Step 6) Test the optimality condition. Singleton gives a condition to stop, but it is not quite 

clear. In this step any other criterion relevant to L1 norm function may be displaced. 
Step 7) This step is not well defined by Singleton. In this phase he tries to choose the best 

gradient among usable gradients. Without this step algorithm is still operational, 
because, the steps are all standards of Cauchy steepest descent method and instead of 
choosing the best gradient we can proceed by going to step 2. 

 Bejar (1956,57) focuses on consideration of residuals rather than on the vector of 
parameters. He puts forth a procedure with the essence of Rhodes (1930). However, he is 
concerned with two and three parameter linear models. 
 Karst (1958) gives an expository paper for one and two parameter regression models. In 
his paper, Karst without referring to previous literature actually reaches to the Laplace 
proposition to solve the one parameter restricted linear model and for the two parameter 
model, he proposed an algorithm similar to that of Rhodes (1930). His viewpoint is both 
geometrical and algebraic and no proof of convergence for his iterative method is offered. 
Sadovski (1974) uses a simple "bubble sort" procedure and implements Karst algorithm in 
Fortran. Sposito (1976) pointed out that the Sadovski's program may not converge in general. 
Sposito and Smith (1976) offered another algorithm to remove this problem. Farebrother 
(1987c) recodes Sadovski's implementation in Pascal language with some improvement such 
as applying "straight insert sort".  
 Usow (1967b) presents an algorithm for L1 norm approximation for discrete data and 
proves that it converges in a finite number of steps. A similar algorithm on L1 norm 
approximation for continuous data is given by Usow (1967a). Given the function f(x) defined 
on a finite subset X={x1,...,xn} of an interval on the real line and also linearly independent 
continuous functions Φ1(x),...,Φm(x) where m<n; consider the "polynomial" 
 m
L(ß,x)=ΣßjΦj(x). In Usow (1967b) the following function is to be minimized: 
 j=1 
 n n m

min: S(ß)= Σ │L(ß,xi)-f(xi)│= Σ │Σ ßjΦj(xi)-f(xi)│ (5) 
 ß i=1                          i=1 j=1 
where ß is vector of size m. The above form is general; if we let f(xi)≡yi and Φj(xi)≡xij the 
function S becomes the standard linear regression objective function. Now let the set K be:  
 K={(ß,d)│(ß,d)εEm+1,S≤d} (6) 
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Then K is a convex polytope, the vertices of which occur only when L(ß,x)-f(x) is zero at m 
or more points of X. The Usow's algorithm is to descend on K from vertex to vertex along 
connecting edges of the polytope in such a way that certain intermediate vertices are by-
passed. This descent continues until the lowest vertex (ß*,d*) is reached. To clarify the 
algorithm assume that we are at the vertex (ßk,dk) on K and the polynomial L(ßk,x)
interpolates m points of X denoted by Uk={u1

k,...,um
k}. Thus, 

 m
L(Fk,x)= Σ f(ui

k)πi(x) (7) 
 i=1 
where, 
 Fk=(f(u1

k),...,f(um
k))                                                                                                            (8) 

 m
πi(x)= Σ aj

iΦj(x) i=1,...,m                                                                                            (9) 
 j=1 
The m coefficients aji are calculated as follows. Form the matrix (Φj(ui

k)) for i,j=1,...,m. Let 
π(x) and Φ(x) be two mx1 vectors for any xεX whose elements are πi(x) and Φi(x) for 
i=1,...,m respectively. Hence, we can derive, 
 π(x)=[(Φj(ui

k))T]-1Φ(x) (10) 
aj

i's are the elements of the ith row of the matrix [(Φj(ui
k))T]-1, where the superscript T 

denotes transposition. Let ei be a zero vector of size m where its ith element is equal to one. 
Then if for some δ, S(Fk-δei)<S(Fk), there is a Tj such that Tjδ>0 and S(Fk-Tjei)<S(Fk). Also, 
 S(Fk - Tjei) = min {S(Fk - tei)}                                                                                          (11) 
 t
and ((Fk-Tjei),S(Fk-Tjei)) is a vertex. On the other hand, a point ui

kεUk may be replaced by a 
point ui

k+1ε{X-Uk} such that the polynomial L(ßki,x) interpolating Ui
k={u1

k,...,ui
k+1,...,um

k}
and S(ßki)<S(ßk). S(ßKi) is the minimum of all norms obtained if ui

k were replaced by the 
different points of the set {X-Uk}, as indicated by the above relation.  
 In going from vertex (ßk,S(ßk)) to (ßki,S(ßki)), one or more vertices on K might have been 
by-passed. The nearest vertex to (Fk,S(Fk)) and below it on the edge parallel to the ith 
parameter space coordinate axis, say the vertex ((Fk-trei),S(Fk-trei)), is obtained from:  
 │L(Fk,xs)-f(xs)│
│tr│ = min {──────────} xsε{X-Uk} (12) 

 s │πi(xs)│
The point xr is characterized by, 
 sgn[L(Fk,xl) - f(xl)] = sgn[L(Fki,xl) - f(xl)],  xlε{X-Uk-xr} (13) 
Now, if there is not any δ such that S(Fk-δei)<S(Fk), then S(Fk) could not be reduced by 
moving on K along the edge parallel to the ith parameter space coordinate axis and ui

k should 
not be replaced by another point from the set {X-Uk}. This iteration is repeated m times, once 
for each point in Uk in succession. The whole cycle is then repeated a finite number of times 
until the solution (ß*,d*) is reached (see also, Abdelmalek (1974)).  
 Relation of this algorithm with simplex method has been discussed by Abdelmalek (1974). 
He shows that Usow's algorithm is completely equivalent to a dual simplex algorithm applied 
to a linear programming model with nonnegative bounded variables, and one iteration in the 
former is equivalent to one or more iterations in the latter. Bloomfield and Steiger (1980) 
devise an efficient algorithm based on the proposition of Usow explained above. 
 Sharpe (1971) by applying the L1 norm regression to portfolio and its rate of return, gives 
an algorithm for the two parameters linear regression model. He argues that for the simple 
model with the objective function,  
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n
S = Σ │yi - (ß0 + ß1xi1)│ (14) 

 i=1 
it must be possible to assign half of the points above and half below the regression line. With 
any given value of ß~

1, we can derive ß0 as the median of ß0i=yi-ß~
1xi1. Now segregate the 

points, such that:  
 nabove nbelow 

S=  Σ [yi-(ß0+ß1xi1)] -  Σ [yi-(ß0+ß1xi1)]                                                                        (15) 
 iabove ibelow 
Rearranging the terms and note that nabove=nbelow gives, 
 S = k1 + k2ß1 (16) 
where, 
 nabove nbelow 

k1 = Σ yi - Σ yi (17) 
 iabove  ibelow 

nabove nbelow 
k2 = -Σ xi1 + Σ xi1 (18) 

 iabove ibelow 
The overall solution strategy may now be formulated as follows. Any value of ß1 may be 
chosen at the outset. By computing ß0i, segregate the points above and below the line. By 
using equations (16) through (18) the corresponding segment of the S and ß1 relation is 
calculated. Sign of k2 indicates the appropriate direction for the next iteration. If k2 is 
positive, only smaller values of ß1 need be considered. If k2 is negative, only larger values of 
ß1 need be considered. If k2 is zero, the initial value of ß1 is a solution. 
 When a border line (median of ß0i) and the direction of search is determined, the nearest 
intersection of the present border line with another should be found. The calculations can be 
reduced by comparing slopes (xi1 values) to determine whether or not two lines intersect in 
the region of interest (thus avoiding needless division operations). The new values k1 and k2
must be computed. If this alteration causes k2 to change sign, the solution has been obtained 
and algorithm stops.  
 Rao and Srinivasan (1972) interpret Sharpe's procedure as the solution of parametric dual 
linear programming formulation of the problem. They give an alternate and about equally 
efficient procedure for solving the same problem. Brown (1980) gives a distinct but similar 
approach to those of Edgeworth (1923) and Sharpe (1971). He emphasizes on the median 
properties of the estimator. The similarity comes from graphical approach of the three 
authors. Kawara (1979) also develops a graphical method for the simple regression model. 
 Bartels and Conn and Sinclair (1978) apply the method of Conn (1976) to the L1 norm 
solution of overdetermined linear system. Their approach is minimization technique for 
piecewise differentiable functions. The algorithm may be reduced as follows. 
Step 0) Select an arbitrary point ß.
Step 1) i) Identify the index set, I = {i1,...,im} = {i│xi

Tß-yi=0}. 
 Let Ith row of X be XI=[xi ,...,xi ] where ijεI and the nullspace N=N(XI

T)={δ│xiδ=0,iεI}. 
 1 m

Let the orthogonal projector onto N be denoted by PN.
ii) Let Ic be the complement of the set I. Compute the vector h = Σ sgn(xi

Tß-yi)xi.
iεIc

iii) Compute p=-PNh that is the projection of -h onto the nullspace of XI, as long as this 
projection is non zero. If p≠0, let g=h and go to step 2. 
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m
iv) compute w according to h=XIw= Σ wjxi ,ijεI. 

 j=1      j 
v) if │wj│≤1 for all j=1,...,m stop. In this case ß is optimal. 

 vi) Find ij0εI such that │wj0│>1. 
 vii) Change I to I-{ij0} and make corresponding changes to XI and N. Compute  
 p=-sgn(wj0)PNxi and let g=h-sgn(wj0)xi .

j0                                                     j0 

Step 2) Determine A={αl│lεIc,αl=(xl
Tß-yl)/xl

Tp,αl>0} elements and order them such that  
 0<αl <αl <...<αl . Let τ=1. 
 1 2 t

Step 3) If pTg≥2sgn(xl
Tß-yl )pTxl , then go to step 5. 

 τ τ τ

Step 4) Change g to g-2sgn(xl ß-yl )xl and τ to τ+1 and go to step 3. 
 τ τ τ

Step 5) Replace ß by ß+αl p and go to step 1. 
 τ

This algorithm has also been modified for the case of degeneracy (see also, Bartels and Conn 
and Sinclair (1976)). 
 Bartels and Conn (1977) showed that how L1 norm, restricted L1 norm, L∞ norm 
regressions and general linear programming can all be easily expressed as a piecewise linear 
minimization problem. Let U and v be of sizes pxm and px1 respectively. Consider the 
function: 
 Φ(ß) = hTß + Σi│yi-xi

Tß│ + Σjmax(0,vj-uj
Tß) (19) 

Where yi-xi
Tß represents the ith element of the residual vector y-Xß and vj-uj

Tß represents the 
jth element of the residual vector v-Uß. To minimize Φ with respect to ß the following steps 
should be taken. 
Step 0) Start with arbitrary ß(k).
Step 1) Find δ(k) so that Φ(ß(k)+Θδ(k))≤Φ(ß(k)) for all Θ>0 small enough. 
Step 2) Choose Θ(k)≥0 to obtain the largest possible decrease in Φ.
Step 3) Let ß(k+1)=ß(k)+Θ(k)δ(k).
When h=0 and the sum on j is vacuous in the Φ(ß) function (19), the resulting simplification 
of the above steps corresponds precisely to the algorithm proposed by Bartels and Conn and 
Sinclair (1978). Other related problems can be solved by modification of Φ(ß) by a quantity 
µ to obtain a parameterized family of piecewise linear functions Φµ(ß), and take following 
steps to find the minimum solution.  
Step 0) Set µ>0; select any ß=ß(0).
Step 1) Minimize Φµ(ß) with respect to ß according to the above procedure. 
Step 2) Stop if a prescribed terminating condition on ß is met; otherwise set µ=µ/10 and go to 

step 1. 
The contribution of this paper is putting a wide class of problems in the mould of two 
algorithms mentioned above. The techniques are easily extended to the models with norm 
restrictions. 
 Bloomfield and Steiger (1980) proposed a descent method for the L1 norm multiple 
regression. Their algorithm is also explained in Bloomfield and Steiger (1983). In some steps 
this algorithm is related to that of Singleton (1940) and Usow (1967b). The basis of this 
method is to search for a set of m observations which locate on the optimal L1 norm 
regression. This set is found iteratively by successive improvement. In each iteration, one 
point from the current set is identified as a good prospect for deletion. This point is then 
replaced by the best alternative. The novel features of this method are in an efficient 
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procedure for finding the optimal replacement and a heuristic method for identifying the 
point to be deleted from the pivot. 
 Denote the x1

T,...,xm
T as rows of the independent variables design matrix which correspond 

to the current set of points 1,...,m; and xm
T for replacement. Set, 

 yi = xi
Tß i=1,...,m-1                                                                                                      (20) 

Redefine ß as, 
 ß = ß0 + tδ (21) 
Where ß0 is arbitrary member of the set and δ vector obeys the following system, 
 xi

Tδ = 0 i=1,...,m-1                                                                                                      (22) 
Given this set of points, optimum value of S may be found by minimizing the following 
expression with respect to the scalar t. 
 n
Σ │yi - xi

T(ß0 + tδ)│ (23) 
 i=1 
Rearranging the terms, leads to: 
 n
Σ │wi││ri - t│ (24) 

 i=1 
where wi=xi

Tδ and ri=(yi-xi
Tß0)/(xi

Tδ). Value of t may be found by Laplace's weighted 
median method. Bloomfield and Steiger propose a weighted modification of partial quicksort 
procedure of Chamber (1971) to find the t value efficiently. The data point corresponding to 
weighted median replaces xk

T. By using the yi from (20) and the additional mth equation, 
value of ß0 is computed. Vector δ is determined up to scalar multiples of (22). The new set of 
parameters values are computed by (21). Now a point should be deleted. Bloomfield and 
Steiger do not give an assured way to identify this point. They propose a heuristic method 
based on gradients and use the following quantity: 
 │ Σ wi - Σ wi│ - Σ wi

│i:ri<0  i:ri>0  │ i:ri=0 
 ρ = ────────────── (25) 
 n

Σ wi
i=1 

Once ρ is calculated for each candidate point for deletion, and delete the point for which ρ is 
largest.  
 To start the algorithm, any set of m rows of X may be chosen, with the appropriate ß0. Add 
variables stepwise until a fit for ß0 and corresponding set of m points are derived. At each 
intermediate step, the fit involves k variables where 0≤k<m and corresponding set of k data 
points with zero residuals. Improving the fit by entering a new variable, thus increasing k to 
k+1. At each stage, it is the measure ρ that determines whether we set up to a larger model or 
improve the current one without setting up. Suppose at the current stage we are dealing with 
k variables. If the value of ρ is largest at the variable p, which p is not in the set of k variables 
above, k is increased to k+1 by entering the variable p and improving the fit with k+1 
variables. If p is in the current set of k variables and ρ is in largest value, corresponding point 
to p is deleted and replaced in a manner described before. In this paper relationship of this 
algorithm to linear programming is also discussed.  
 Seneta and Steiger (1984) proposed an algorithm for L1 norm solution of slightly 
overdetermined system of equations. Their proposition is based on the above algorithm of 
Bloomfield and Steiger. It is more efficient than the former if m is near n. Given (xi,yi)εRm+1,
i=1,...,n and k=n-m, X=(x1,...,xn)T, their algorithm may be described as follows: 
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Step 1) Renumber the rows of (X|y) such that XN the bottom m rows of X, is invertible. Solve 
the k linear equations system XN

TN=-XT
T for N, where XT denotes the top k rows of 

X.
Step 2) Let D=(A|c) where A=(I|N) is of size kxn and c=Ay.
Step 3) Let σ =(1,...,k), σc=(k+1,...,n). 
Step 4) Set rσ(i)=bi for i=1,...,k; rσc(i)=0 for i=k+1,...,n. 
Step 5) Let I={i│1≤i≤k,ci=0}. 
Step 6) Do loop for j=1 to m: 
 Let vi=Diσc(j) for j=1,...,k. Let M={i│sgn(ci)≠sgn(vi)} and J={1,...,k}\N\I. 
 │ΣM│vi│-ΣJ│vi││-1-ΣI│vi│

Let ßj = ────────────────── 
k

1+ Σ │vi│
i=1 

 End loop. 
Step 7) Set S={1,...,m}. 
Step 8) Choose ßq as max{ßj}. 
 s

Step 9) If ßq>0 go to step 11. 
 k
Step 10) If П rσ(i)=0, the problem is degenerate;  and  stop. 
 i=1                              m 
 Otherwise, solve, yσc(i)= Σ xσc(i)jΘj for Θ, stop. 
 j=1 
Step 11) Let vi=Di,σc(q) for i=1,...,k. 
Step 12) Compute t^=weighted median of c1/v1,...,ck/vk,0 with weights │v1│,...,│vk│,1. 
Step 13) If t^=cp/vp≠0 go to step 16. 
Step 14) Let S=S\{q}; if S=Ø go to step 10. 
Step 15) Go to step 8. 
Step 16) Divide row p of D by Dpσc(q).
Step 17) For i≠p in D, let (row i)=(row i)-(row p)*Diσc(q).
Step 18) Commute for pair σ(p) and σc(q). 
Step 19) Let rσ(i)=bi for i=1,...,k; and set rσc(q)=0. 
Step 20) Go to step 5. 
 Seneta (1983) reviews the iterative use of weighted median to estimate the parameters 
vector in the classical linear model when the fitting criterion is L1 norm and also Cauchy 
criterion.  
 Wesolowsky (1981) presents an algorithm for multiple L1 norm regression based on the 
notion of edge descent along the polyhedron of the objective function. This algorithm is 
closely related to those of Rhodes (1930) and Bartels and Conn and Sinclair (1978) which 
explained before. Consider the multiple linear regression as before. Select a set of m points 
(xj1

I,...,xjm
I,yj

I). The following system of equations can be solved for a unique set of 
coefficients. 
 m

yj
I - Σ ßhxjh

I = 0, j=1,...,m                                           (26) 
 h=1 
An edge is formed of any subset J consisting of m-1 equations. To minimize along an edge, 
set: 
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I I I J J J
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I I I J J J
m m mm m m m m

Y x x Y x x

Y x x Y x x− − −

       
      = = = =      
             

I I J JY X Y X
… …

� � � � � � � �
� �

 (27) 

 
Let ßp be formed from ß by deleting ßp and let xp be the pth column in XJ and let XpJ be 
formed by removing xp from XJ. Then for a given ßp it can be shown that, 

ßp = XpJ
-1YJ - ßpXpJ

-1xp (28) 
Let the elements of ßp be 

ßq = rq - sqßp for q ≠m (29) 
Substitution in the L1 norm objective function gives, 

1
1

1

2

min :
m

q iq ip
q p

m

i q iqn m q p
ip q iq m

i q p
ip q iq

qs x x

y r x
x s x

x s xβ
β

≠

≠

= ≠

=≠

− ∑
− −∑ ∑

− ∑
∑

(30) 

Now the following steps should be taken. 
Step 1) Set k=1, l=0, choose initial values for ß1,...,ßm. Least squares values are one 

possibility. Let I(1)={j1
(1),...,jm

(1)} be a set of m data points chosen in sequence as 
follows. The point with the smallest squared residual is chosen each time subject to 
the condition that XI

(1) is nonsingular. Find ßq
(1) for q=1,...,m, by solving YI

(1)=XI
(1)ß.

Set I(k)=(j1
(k),...,jm

(k)); J=(j2
(k),...,jm

(k)). 
Step 2) Set k=k+1. Obtain ßp for the smallest p from (30) by using the weighted median 

procedure. Set ßp
(k)=ßp and let i be the index which defines the lower weighted 

median ßp in (30) for the lowest possible p. 
Step 3) a) If ßp

(k)-ßp
(k-1) = 0 and if  l>m, go  to  step 4.  Otherwise, set I=(j2

(k-1),...,jm
(k-1),i) and 

l=l+1, ßq
(k)=ßq

(k-1) for all q and go to step 2. 
b) If ßp

(k)-ßp
(k-1)≠0, set l=0. Calculate ßq

(k) for q≠p from (29). Set I(k)=(j2
(k-1),...,jm

(k-1),i) and go to 
step 2. 

Step 4) Calculate ßq
(k) for q≠p from (29); set ß*=ß(k) and stop. 

In this paper Wesolowsky also discusses the problem of multicolinearity and gives an 
appropriate solution. 

Josvanger and Sposito (1983) modify Wesolowsky's algorithm for the two parameter 
simple linear regression model. The modification is an alternative way to order observations 
instead of sorting all of them to find the necessary weighted median value. Suppose the 
problem has been reduced to a weighted median problem. They place smaller values of 
factors to be sorted with corresponding weights below ß1

(k-1) and larger or equal values above 
it, then recheck the inequalities (4) of weighted median. If the inequalities do not satisfy then 
an appropriate adjustment is made. In particular, if the right hand side is overly weighted, 
then the weight corresponding to the smallest sorting factor is transferred to the left hand 
side, and the check is made again. A computer program for this algorithm is also given by the 
authors. 

"Generalized gradient" method introduced by Clarke (see, Clarke (1983)) is a general 
procedure for nonsmooth optimization functions and problems (see, Osborne and Pruess and 
Womersley (1986)). A subclass of this method is called "reduced gradient" explained by 
Osborne (1985) is a general algorithm which contains linear programming, piecewise linear 

10 of 18

Tuesday , January  04, 2005

Elsevier



Rev
ie

w
 C

op
y

11

optimization problems and polyhedral convex function optimization algorithms inside. The 
reduced gradient algorithm is a special case of descent method which possesses two 
important characteristics. Identify direction and taking a step in this direction to reduce the 
function value (see also, Anderson and Osborne (1976), Osborne and Watson (1985) Osborne 
(1985,87)). The algorithms of Bartels and Conn and Sinclair (1978), Armstrong and Frome 
and Kung (1979), Bloomfield and Steiger (1980) are all special cases of reduced gradient 
method. 

Imai and Kato and Yamamoto (1987) present a linear time algorithm for computing the 
two parameter L1 norm linear regression by applying the pruning technique. Since the 
optimal solution in the ß0xß1 plane lies at the intersection of data lines, so, at each step a set 
of data lines which does not determine the optimum solution are discarded. In this paper 
algebraic explanation of the problem is also offered. 

Pilibossian (1987) also gives an algorithm similar to Karst (1958) for the simple two 
parameter linear L1 norm regression. Bidabad (1987a,b,88a,b) proposed descent methods for 
the simple and multiple L1 norm regressions. These algorithms with many improvements will 
be discussed by Bidabad (1989a,b). Bidabad (1989a,b) introduces four descent algorithms 
which two of them are for simple and two others are for multiple regression models.His first 
algorithm is crude and tries to check many points to find optimal solution. Second algorithm 
is more efficient. Algorithm three is a partial descent procedure for general linear model. 
Algorithm four is a full descent method which has many proved properties. He also proves 
the convergence of all above four algorithms. 

 
Simplex type algorithms 

The essence of linear programming in solving L1 norm problem may be found in the 
work of Edgeworth (1888). Harris (1950) suggested that the L1 norm estimation problem is 
connected with linear programming. Charnes and Cooper and Ferguson (1955) formulated 
the problem as linear programming model. This article is the first known to use linear 
programming for this case. Adaptation of linear programming to L1 norm estimation problem 
is shown below: 

min: 1n
T(w+v)

ß
s.to: Xß+In(w-v)=y (31) 

w,v≥0
ß unrestricted in sign 

where 1n is a vector of size nx1 of 1's and In is a nth order identity matrix. The vectors v and w
are of size nx1 and their elements may be interpreted as vertical deviations above and below 
the fitted regression hyperplane respectively. This problem has n equality constraints in m+2n 
variables. When n is large, this formulation generally requires a large amount of storage and 
computation time. 

Wagner (1959) shows that the formulation of the L1 norm regression may be reduced to 
m equality constraints linear programming problem. Thus, this dual formulation reduces n 
equations of primal form to m equations of dual form and considerably reduces the storage 
and computation time. 

Fisher (1961) reviews the formulation of the L1 norm estimation in relation with primal 
form of linear programming. Barrodale and Young (1966) developed a modified simplex 
algorithm for determining the best fitting function to a set of discrete data under the L1 norm 
criterion. The method is given as Algol codes (for critics see, McCormick and Sposito 
(1975)). Davies (1967) demonstrates the use of the L1 norm regression estimates. Rabinowitz 
(1968) also discusses the application of linear programming in this field. Crocker (1969) 
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cautions against using the L1 norm criterion merely to restrain unwanted negative coefficient 
estimates which occur in least squares regression.  Multicolinearity is one of the cases which 
causes this result. Robers and Ben-Israel (1969) by using interval linear programming, 
proposed an algorithm to solve the L1 norm estimation problem. Rabinowitz (1970), Shanno 
and Weil (1970) discuss some connections between linear programming and approximation 
problem. Barrodale (1970) summarizes the linear and nonlinear L1 norm curve fitting on both 
continuous and discrete data. Spyropoulos and Kiountouzis and Young (1973) suggest two 
algorithms for fitting general functions and particularly fast algorithm with minimum storage 
requirements for fitting polynomials based on the algebraic properties of linear programming 
formulation. Robers and Robers (1973) have supplied a special version of the general method 
of Robers and Ben-Israel (1969) which is designed specifically for the L1 norm problem. A 
related Fortran code is also provided. 

Barrodale and Roberts (1973) present a modification of simplex method which needs 
smaller amount of storage and by skipping over simplex vertices is more efficient than usual 
simplex procedure. Define the vector ß as a difference of two nonnegative vectors c and d,
their formulation can be stated as follows, 

min: 1n
T(w+v)

c,d
s.to: X(c-d)+In(w-v)=y (32) 

w,v,c,d≥0
Because of the relationships among variables, computation can be performed by using only 
(n+2)x(m+2) amount of array storage, including labels for the basic and non-basic vectors.  
An initial basis is given by w if all yi are nonnegative. If a yi is negative, sign of the 
corresponding row is changed and the unit column from the corresponding element of v is 
taken as part of the basis. The algorithm is implemented in two stages. First stage restricts the 
choice of pivotal column during the first m iterations to the vectors elements cj and dj

according to the associated maximum nonnegative marginal costs. The vector that leaves the 
basis causes the maximum decrease in the objective function. Thus the pivot element is not 
necessarily the same as in the usual simplex.  Second stage involves interchanging non basic 
wi or vi with the basic wi or vi. The basic vectors corresponding to cj and dj are not allowed to 
leave the basis. The algorithm terminates when all marginal costs are nonpositive (see, 
Kennedy and Gentle (1980)). A Fortran code for this procedure is given by Barrodale and 
Roberts (1974). Peters and Willms (1983) give algorithms accompanying with computer 
codes for up-and-down dating the solution of the problem when a column or row inserted to 
or deleted from X, or y is changed. These algorithms are all based on Barrodale and Roberts 
(1973,74) procedure. 

Abdelmalek (1974) describes a dual simplex algorithm for the L1 norm problem with 
no use of artificial variables. For this algorithm, the Haar condition (see, Osborne (1985), 
Moroney (1961)) need not be satisfied anymore. This algorithm seemed to be very efficient at 
the time of publication. An improved dual simplex algorithm for L1 norm approximation is 
proposed by Abdelmalek (1975a). In this algorithm, certain intermediate iterations are 
skipped and in the case of ill-conditioned problems, the basis matrix can lend itself to 
triangular factorization and thus ensure stable solution.  Abdelmalek (1980a) improves his 
previous algorithm by using triangular decomposition. A Fortran translation of the algorithm 
is given by Abdelmalek (1980b).  Sposito and McCormick and Kennedy (1975) summarizes 
much of the works on L1 norm estimation including problem statement, linear programming 
formulation, efficient computational algorithms and properties of the estimators. 
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Armstrong and Kung (1978) propose an algorithm for simple two parameter L1 norm 
regression. The method is a specification of linear programming of Barrodale and Roberts 
(1973) algorithm. A Fortran code is given too. 

Armstrong and Frome and Kung (1979) use LU (Lower-Upper triangular) 
decomposition of Bartels and Golub (1969) in maintaining the current basis on revised 
simplex procedure. A Fortran translation is also enclosed. Armstrong and Godfrey (1979) 
show that the primal method of Barrodale and Roberts (1973) and dual method of 
Abdelmalek (1975a) are essentially equivalent. With a given initial basis for the two 
methods, they show that, both algorithms will generate corresponding bases at each iteration. 
The only difference is the choice of initial basis and heuristic rules for breaking ties.  
Armstrong and Kung (1982b) presents a dual linear programming formulation for the 
problem. Various basis entry and initialization procedures are considered. It has been shown 
that the dual approach is superior to primal one if a good dual feasible solution is readily 
available (see also, Steiger (1980)). Banks and Taylor (1980) suggest a modification of 
Barrodale and Roberts (1973) algorithm. The objective function is altered to include 
magnitudes of the elements of the both errors and solution vectors. For a general discussion 
on simplex for piecewise linear programming see Fourer (1985a,b) and for a survey of the 
corresponding problem on the L1 norm see Fourer (1986).  Narula and Wellington (1987) 
propose an efficient linear programming algorithm to solve the both L1 and L¥ norms linear 
multiple regressions. The algorithm exploits the special structure and similarities between the 
two problems. 

Brennan and Seiford (1987) develop a geometrical interpretation of linear programming 
in L1 norm regression.  They give a geometric insight into the solving process in the space of 
observations. McConnell (1987) shows how the method of vanishing Jacobians which has 
been used to optimize quadratic programming problems can also be used to solve the special 
linear programming problem associated with computing linear discrete L1 norm 
approximation. For the possibility of applying other types of linear programming solutions 
such as Karmarkar solution to L1 norm problem see Meketon (1986). 

 
Other algorithms 

This category consists of algorithms which were not classified in the two last sections. 
Rice (1964c) applies the bisection method to L1 norm regression. In this method at each 

step the domain of S is broken to two segments and the appropriate segment is selected for 
the next iteration. Solution is reached when the last segment is less than a predetermined 
small value. 

Abdelmalek (1971) develops an algorithm for fitting functions to discrete data points 
and solving overdetermined system of linear equations. The procedure is based on 
determining L1 norm solution as the limiting case of Lp norm approximation when p tends to 
one from right in limit. This technique thus obtains a solution to a linear problem by solving a 
sequence of nonlinear problems. 

Schlossmacher (1973) computed the L1 norm estimates of regression parameters by an 
iterative weighted least squares procedure. Instead of minimizing sum of absolute deviations 
he minimized sum of weighted squared errors with 1/│ui│ as weights. Once least squares is 
applied to the problem and residuals are computed. The absolute value of the inverse of the 
residuals are again used as corresponding weights in the next iteration for minimizing the 
sum of weighted squared errors (see also, Holland and Welsh (1977)). Fair (1974) observed 
that the estimated values of ß did not change after the second or third iterations. In cases 
where any residual is zero, continuation of procedure is impossible, because the 
corresponding weight to this residual is infinite. This problem is also discussed by Sposito 
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and Kennedy and Gentle (1977), Soliman and Christensen and Rouhi (1988). Absolute 
convergence of this algorithm has not been proved, but non-convergent experiment has not 
been reported. 

Soliman and Christensen and Rouhi (1988) used left pseudoinverse (see, Dhrymes 
(1978) for description of this inverse) to solve the general linear L1 norm regression.  
According to this procedure one should calculate the least squares solution using the left 
pseudoinverse or least squares approximation as ß^=(XTX)-1XTy. Calculate the residuals as 
u=│y-Xß^│; where u is nx1 column vector. Select the m observations with the smallest 
absolute values of the residuals and partition the matrices as the selected observations locate 
on the top, 

�

�

�

�

�

�
, , .

    
    

= = =    
    

    

u X y
u X y

u yX

� � � (33) 

Solve y^=X^ß^ for the top partitions as ß^=X^-1y. Although this procedure is operationally 
simple, its solution is not the same as other exact methods and no proof is presented to show 
that the solution is in the neighborhood of the exact solution of the L1 norm minimization 
problem. 

Application of median polish (see, Tukey (1977)) and e-median polish to L1 norm 
estimation are discussed and developed by Bloomfield and Steiger (1983), Kemperman 
(1984), Sposito (1987a), Bradu (1987a,b). 

Application of Karmarkar's algorithm for linear programming and its relation to L1

norm is given by Sherali and Skarpness and Kim (1987). For using homotopy method in L1

norm see Garcia and Gould (1983), Schellhorn (1987). An algorithm for linear L1 norm 
approximation for continuous function is given by Watson (1981), (see also, Baboolal and 
Watson (1981)). 
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