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Abstract: This note proposes a method to find the Least Absolute Exrror
estimate of b in the model yi=bxi+ui. The proposed method is an alterna-
tive to linear programming algorithm. It uses a technique of discrete
differentiation over subscripts. Unlike the estimation method based on

linear programming, the proposed procedure can be simply handled.
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1. Introduction

Historically, The use of Least Absolute Error (LAE)by Edgeworth goes
back to 1888, Since then, though attempts are made to overcome the com-
putational difficulties there still remains the derivation of the'sampling‘
distributions of these estimators. In this note an algorithm is proposed

to reduce the computatyinal difficulties.

This new procedure might also help the derivation of the sampling distribu-

*
tion for the simple models . Consider the following regression model:

v. = 7 b.X.. + u. i=1,...,n (1)

*The author is grateful to Dr.J.Mojarrad and Dr. A.Monajemi for wvaluable
advice on various stages of this work.

*Rosenberg and Carlson [ﬁ].
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where bj are population parameters, Yi'xij and u, are dependent, indepen-
dent and random variables respectively. We wish to estimate bjs by mini-

mizing the expression:

B s n m
B, P M. e . e e s (2)
i=1I i 1=1l T gmy A

Taylor [3], clarifies the mechanics of LAE estimation. Suppose m=1,

(2) reduces to:

n ~ n 3 n
§ = ¥ |y “Y:I= I ly,~bBX. |]= 5 B8, (3)
1k tenoms; wedmbe-taselibedddbe &

A typical element, Si==yi--bxi can be viewed as a broken line in the
A
(S,b) plane composed of two half-lines. S, attains its minimum at s, = 0.

At that point:

A Y.

b, = ;i— (4)
The slope of the half-lines to the left and right of gi is equal to -|xi|_
and Ixil respectively. So Si is always convex and their sum S is also con-
vex with slope at any b equal to the sum of the slopes of all Si at that
value of E. Since the slope of the individual Si changes only at the mini-
mum of Si' the minimum of S will lie on one of the minimum points of Si'
Thus, the regression line will pass through origin with the slope gi in
(4) that minimizes S. On the other hand, to find the LAE estimate of b we
need to find only one observation. Furthermore, Taylor concludes that:
"This implies, of course, that the regression line must pass through the
observation corresponding to minimizing i. The regression line, therefore,
is determined by the point of origin and observation associated with mini-
mizing Bi". But he did not continue this approach-minimizing S with res-

pect to subscript i. This paper tries to develop this point of view. In

the next section after rewriting (3) in a suitable fashion, the value of i
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is determined by using discrete differentiation.

By a similar discussion Taylor concludes, when the number of para-
meters is m, m observations must lie on the regression hyperplane. On the
other hand, m equations of the form in (5) are nesessary to specify the

regression hyperplane.

m N
Y I=30F & Sy Ky (5)

In order to minimize (2), Fair [?] computed the LAE estimate of bj

by an interative weighted-least-squares procedure (see Maddala [%] )

2
u, 9

= zwiui, where

Instead of minimizing z[ui], Fair minimized ¥ = l
i

-
w, =
1 luil

used as weights. Once initial values for u, are estimated by

least squares, Wi are computed and they are used to minimize zwiui.-New
residuals are then computed and procedure is repeated, Fair observed that
the estimates of bj did not change after the second or third interations.

In cases where any residual is zero, continuation of procedure is impossi-

ble.

Charnes et al. [?] showed that the LAE estimator can be obtained as
the solution to a linear-programming (LP) problem. Rewriting u, as a

difference between two non-negative auxiliary variables (vi,wi):

m
e Sl il el Del LT Vi s 9 L ke sl L 16)
J=l
* 5 '
S = 3 (vi+wi) can then be defined as an objective function to be mini-
i=1 ,
. *
mized with respect to bj, v, and W, . Although S and S in (2) are different

*
functionals, those values of v, and W, that minimize S 1is equivalent to

the values of u, which minimize S. Now the equivalent LP problem to LAE is

* %*

to minimize S , with respect to bj'bj AP d w,

-



min : 3 (vi+wi) (7)
i=1
Im Pt o
S.To:vi—w L T bxi.- y b Xi'=Y1 V.‘L
Vi > 0 Vi (8)
w., >0 b/i.
L+
b, 20 V3

*
Inserting b, in (8) is a device to enable the coefficients of the

J
independent variables to be of either positive or negative sings. It should
be noted that only one member of each of the pairs of nonslack variables
(bj,b;) and also slack variables (vi,wi) for each j and i can be nonzero
in any solution. This comes from the dependency of each pair in the n equa-

lity constraints in (8) (see Taylor [f], PP.175-177). So minimization of

(7) and (2) will be equal.

The first simplex tableau for solving LP problem in (7) and (8) is
of dimension (n+l) X (2m+2n) which makes it computationally cumbersome;
though it will always yield a solution. In order to avoid this difficulty

an alternative to LP is proposed.

2. A proposed algorithm

For medel (1) consider the case of one independent variable with no

intercept, namely yi==bxi-rui. For the LAE estimate of b for the above

model the following procedure can be suggested:
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n n
s = 1 lugl= 3 fvgowx

i=1 1=
n
- iil (yi-bxi) 51gn(yi-bxi)
e L 75
= ijl xi(iz-- b) slgn(iz-- b) 51gn(xi)
n Yi Yi
= ¥ X, (=— - Db) sign(— - b) (9)
: i X, X,
i=1 i i

Let Zi = yi/xi and sort Zi in a descending order., Rename the resul-

ting ordered Zi(i=1,...,n) to Zh(h=1,...,n). Zh elements sould have the

following property:

Z Z if h < 1 fOI’ h; l=1r---;n

e |

Rewrite (9) with ordered observations as:

n
S = I [%](z,-b) sign(z, -b) (10)

Let us denote the observation which will be on the regression line

by (X ,+1)= the(t+l)th observation. Value of Z,£ is the slope of a

h
ray passing through the origin and the hth observation. Therefore,

if,; h < t thens Z. > b and uh > 0

h
) T h=t then; Zh = b and uh = 0
L, B >t then: Zh b and . uh < 0

We can now rewrite (10) as follows:

n
S = gy (Z, -b) - ¥ (Z, - b) (11)
hs=1lx1"l 8 h=t+1|xh| “n

To find the minimum of S we need to differentiate 'S with respect to

b and subscript t and equate them to zero:
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n

& +
-—=-z| + y X1 =0 (12)
o e % h=t+1| n !

The differentiation of S with respect to subscript t must be the discrete

derivative (see, Bender and Orszag [}]):

42 = s(t+1) - s(t) = t::1 X, | (2, =b) - ?: X, [ (2, = D)
At h=1 il h=t+2 .
t n
- h::'l]xh\(zh-b) E h=§+l|xh|(zh—b) = 0
or:
A Y+l
b=12 ,= X, \q (13)

Note that (13) is again Taylor's relation (4). (12) and (13) are
two equations with two unknowns t and b. t can be found by rewriting (12)

as follow:

k n |
= F % b B k=1,...,n (14)
el xhl I hl 4

D
X h=k+1

It is obvious when k increases from one to n, D, attains different

k

values which increases from negative to positive. So, initially k is set

equal to one and D, is computed accordingly, If D, is less than zero, k is

k k

increased by one unit and procedure is repeated until D, is greater than

k

zero. When Dk reaches the first positive value, t+l=k. By this procedure,

value of t+l is found so the observation corresponding to this subscript

(t+1=k) is selected (X ) . LAE estimate of b is found by substitu-

t+1 'Y+l

ting the values of X and into (13).

t+1
The procedure abplied to the model with only one parameter can not

be simply generalized to the m parameter model in (1). To apply this

method to (l), we need to reorder observations in a way that (2) could be

e



decomposed as follow:

t m
S =

h=1 j=1

z(yh- o B

n m
Recho=s F HAygessy Bk, ) (15)
IS I j=1 3 M

Which is the generalization of (ll) to m parameters. But our first

problem is to find a logic which enables us to form (15). On the other

hand we need to reorder observations in such a way, when h, is less, equal

or greater than t+l, u_

creases from one to n, u

is greater, equal or less than zero; and as h in-

h decreases accordingly.

If (2) could be written as (l1l5), we can again differentiate it with

respect to bj and t and set them equal to zero:

2 S t n
S—= -y R T X - ® D j=1,_.,,m (16)
By pe RN -
m
AS
st~ el Al PyXiv1,3 = O Sl
m distinct values for t could be computed from (16) by using ij in (18)
for each explanatory variables.
k n j=1l,...,m
Doy, ® I - ¥ . (18)
S | b3 h=k+1 "n3 k=1,...,n

It should be noted that these m values for t, all will give a unique

value for S (15), becaues all the errors corresponding to these ts have

zero values. This becomes clear from the Taylor's conclusion that there

exist m points on the regression hyperplane with zero errors. In (15),

these m points locate sequentially, because we have reordered the obser-

vations such that when h increases from ocne to n errors decreases from the

greatest positive to the lowest negative values. So these m zero errors

will locate one after another nearly in the middle of n expressions in (15).
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The procedure could be similar to that of (14). Corresponding to these m
values for t, m observations are recognized. Substituting the values of
these m observations in (17), m equations are found which could be solved
simultaneously for m bjs. Note that these last m equations again confirm

the Taylor's conclusion (5).

3. Evaluations

In comparison with LP method, the proposed Algorithm (PA) is very
efficient both in execution time and storage requirements. In order to
compare these two algorithm, 30 random experiments for the model yi=bxi+ui
have been explored. In each experiment n normal random number u, have been
generated (see, M.J.Mojarrad [ﬁ]). Also n fix values are selected for xi
which are uniformly distributed. Y has been computed for ten different
values of b. The results of experiments are presented in table 1. In this
table the execution times for each experiments have been compared. Total

number of interations of LP method for reaching the minimum solution have

been also encountered. This shows the complexity of the LP procedure.
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In all of these experiments PA in highly faster than LP.

Table 2 compares the storage requirements for both Algorithms for

different sample sizes.

Table 2

Comparison of memory* requirements for LP and PA for different sample

sizes.

___-__—-'_-'_-——————————-—_____—__—_______ - ——

n =20 = 50 n = 100
—— e _ VR
LP 59392 71680 86016
PA 1406 : 1886 2686

R O M S e e s B s Wi ) L AR S 1 Ve 1Y g g .
* Bytes

As it can be seen from tables 1 and 2, the proposed algorithm is
markedly superior to linear programming in execution time, storge require-

ments and also simplicity in programming.
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