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An algorithm for the simple restricted linear model was previously
given by Bidabad. This note deals with the general linear model. An algo-
rithm is therefore proposed for this case which is highly efficient in

compare to linear programming.

1. Introduction

In a recent paper Bidabad [}], an efficient algorithm proposed for

Least Absolute Error (LAE) estimate of b, in the simple model,

2

Yg = BoXoy + 9y (1)

where b2 is population parameter, Yi'xzi and u, dependent, independent

and random variables respectively. This papar tries to find an algorithm

for LAE estimate of bj for j=l1,...,m, in the general linear model,

m

A7 T oy LR (2)
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LAE estimates of bj for {j=1,...,m} are attained by minimizing
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The problem of LAE estimation as decribed by Taylor [}] and Bidabad
[1] can be reduced to find those observations which have zero errors in

the minimand solution of (3).
2. The Proposed Algorithm

To find the LAE estimates of {bj,;j=1,...,m]-for (2), an algorithm
is proposed to search those observations on the regression hyperplane. For
m=2 and xli==0, i=l,...,n, (2) reduces to (l1l). The LAE estimate of b2 for
the simple model can be obtained by the algorithm proposed by Bidabad [%].

Now, let us consider a simple unrestricted linear model in which m= 2 and

X - 3=1 ... e
11' [ 4 r 4

. i bl_+ b2x2i + u, (4)

The objective function S to be minimized will be,

n

8= ¥ |y, =b, =b

. i 1 %04 | (5)
i=1

Let kl denotes a subscript which is in the range one to n, and assume
that the klth observation (x2kfykl) is a candidate to be on the regression
line. If this is the case, then uk1==0 and we can transfer the origin of

the xz-Y coordinates to the point (x2kl'yk1) without any loss. For this,

we should rewrite all observations as deviations from the point (x2kl'ykl)’
L - i=1 n
yi "—yi ykl Ty e ey
(6)
xkl = X - X
21 21 Zrl s A

Rearranging the terms,
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Rewriting (6) and (7) for kl=p,g and substituting them into (8), vields

n
S, = I |y - by e,
i=1
n
s = I |y:~-bxl (12)

q j=1 1 2 2L

Using (6).and rewriting (ll) and (12), it can be shown that Sp is equal

K8,
- n
Sp = iillyi"bzxZi—( P_bzxzp)l (13)
n
Sq = iillyi-bzxzi-(yq-bzxzq)l (14)

Sp is equal to Sq if and only if the two parantheses inside the absolute
value signs in (13) and (14) are equal. This can be concluded by sSlving

the two equations iq (10) for bl' that is,

bl = yp-bzxzp = yq-—bzx2q (15)

Thus, SP==Sq, SO bg and bg derived from minimizing either Sp or Sq must

be equal,

kl

This gives a criterion to find the desired b. from all b2 , that is

2

is denoted by b.. Value of b, is

P =bq. The estimated value of b 2 1

when b2 5 5

simply computed from (15). Now let us summarize the whole procedure for

finding the values of b, and b_ for the.model given in (4).

4 2

Crude Algorithm:

Step 0: Set k1l = 1,

Step 1: Compute (6).,

kl

Step 2: Minimze (9) using Bidabad [;J and find b2 :
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Yy =Y, + Y4

i i
(7)
X,,= xkl + X
21 21 2kl

Now substitute (7) into (5), then, the LAE minimization problem can be

redefined as,

n
! B kl kl Sk =
min Skl = .E ]Yi b2x2i-k(yk1 bl b2x2kl)l (8)
b, ,b i=1

-l

since we assumed that the klth observation is on the regression line, the

term ykl-bl-b2x2k1==0, thus (8) reduces to
n
. - kl kl
min Skl = .Eklyi b2x2i | (9)

b2 1=1'
The solution of the optimization problem in (9) is the same as described

by Bidabad.[l]. Note that when uk1==0, then the minimum value of (9) is

equal to the minimum value of (5).

e k .
Let b2 derived from minimizing (9) be denoted by b21. By ohanging
k1l from one to n and minimizing (9), b;,...,bz are attained accordingly.

Now the question is this: what value of kl minimizes (5)? In other words,
which observations are on theiregression line? Note that in ftwo parameters LAE
linear model, there exists at least two observations with zero errors.

transferring of X_-Y coordinates to both these points leads the minimum

2

of (5) unchanged. Suppose pth and gth are those two observations on the

regression line, thus

i
o

u =y =ph =p X
(10)

I
o

T Ry

-
i
=

!
o
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kl kl-k

Step 3: Check if b2 = b -

5 for O < k < k1, then set b2 = b2 and

b1 o bzxzkl then stop.

Step 4: Increase kl by one and go to step 1.

However, this crude algorithm for finding b1 and b2 is not computa-
tionaly efficient because it usually requires testing the majority of

observations. Therefore, in order to make our algorithm efficient some

elaborations are necessary.

Instead of setting kl=1, let us set kl equal to an arbitrary value

such as o .0 is an integer from one to n. Suppose now, ua =Yu -bl -b2x2a= 0,

and rewrite (9)

n
min : § =3 [ - b i ]| (16)
: 1 2 21
b i=1
2
Minimizing (16) gives b: which is equal to:
Ya W Ty
35 Boie, LB (17)
2 xa sz - x2a
2B

By pivoting on ath observation another point such as g is found

which B refers to that observation which has zero error in the minimand

luti =y, - b, - = 0.
solution of (16), so uB yB bl b2x28 0
Let us denote minimum of §, in (16) as S; :
" 4 o o o
Sa = I lvy = Byxy, i
i=l
Note that
o a
By T ¥y T b= ¥g - DX, (19)

This comes from multipling (17) by its denominator and rearranging the

o
terms. Substitute (19) in (5),
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or,

s= 3 [y-b%% | = 1 |y¥ - b5 | (20)

Using (18) the first sum in (20) is Sa and the second sum is S evaluated

B
akt b = bg. Thus it can be concluded that:

2
*
sa = SBI 3 (21)
b2=b2
*
S is at minimum but SBI o, oan be minimized yet for other values of b,.
b2=b2
Therefore, an important result is derived, that is
* * .
8. >8 (22)
o B

Inequality term in (22) guarantees that if we choose an arbitrary
point to transfer the origin of coordinates to it and minimize the objec-
tive function (9) another point is found, then transfer of the origin of
coordinares to the newly found point decreases the total sum of absolute
errors. Therefore, at each transfer point we get near to the minimum of S.

By a similar discussion, it can be generalized that

* * * %*

S | T 23
2 > SB > SY > 5 (23)

Note that o is an arbitrary starting value. R is derived by minimizing S ,
o

y is derived by minimizing SB and § is derived by minimizing SY and so on.

Now, the question is when the minimum value of S is reached? Suppose

* *

S =S , by transferring the origin of coordinates to the point t and
T
* *
minimizing S the vth observation is derived. When S = S& by minimizing
T

§ 7L * * *
Sﬁ}“Tth observation is again found because Sv = ST = S and the vth and

Tth observations are both on the LAE regression line. This conclusion
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gives a criterion to stop the procedure. Hence

* * * * * %* %

B FE.DE PR P s B EH .S 24
o B Y S : \ ba®)

It should be noted that if the minimum solution of S is not unique,
that is function S has a horizontal segment, the procedure stops when 1t

reaches the first minimum solution.

Now, let us introduce the complete stages of the algorithm to find

the LAE estimates of b, and b_. in the simple linear model yi=b

1 . +b2x

i+u. ’

L 2 h §

Efficient Algorithm

Step- 0: Select an arbitrary observation o and set kl =a.

Step 1l: Compute (6) with kl = a.

Step 2: Minimize (9) using Bidabad [i] and find that observation which
locates on the line; observation B.

Step 3: Compute (6) with k1l = B.

Step 4: Minimize (9) and find that observation which locates on the line;
observation y.

Step 5: Check that if y = a then ; = ;/kY - B =y = E X and stop.

2 2R 1 Y 2 2y
Step 6: Set a=B and go to step l.

Now we extend the above procedure for two parameters restricted

model:
¥i BOgE T Ralas X1 (25)
Let,
n
e B g byX,: = bgXa,| (26)

S can be written as:

S



n Y. % . n
B i SR ou * sl sl
B F g =y =By T 1 P T By P e
i=1l 21 Z 3 i=1l
in which,
sl s
R boskien - iyl
(28)
sl ._" _ g -
x3i - x3i/x2i l—l;---,n

Minimization fo (27) is similar to a linear simple model which explained

above. An important distinction for solving (27) compare to (5) is the

which has been multiplied to |y51 - b. - Db i

expression |Xx < % .
P I 3 2 3 31

2i| | . This

multiplication does not make any problem when (27) is minimized, because

if
slkl sl sl i=1 o
Yi Yj: Ykl J oo oy
(29)
slkl _ xsl N xsl i=1
Y33 T *3i T T3xa P D e
then we can rewrite (27) similar to (9); 80
- slkl slkl
Sg1 = iillxzillyi = bgxy; | \30)

To minimize (30) following Bidabad's procedure [1}, we should use the

following expression,

slkl|, slkl, slkl

| Xyi%33 1Yy © /%gy" - Py )

e
4 [

N~ B

1
According to Bidabad [l], in applying discrete derevative to (31), the
content of the first absolute value sign is used to find the subscript of
that point which locates on the regression line. This is the main diffe-

rence in compare to the simple unrestricted linear model (4).

il Do



For the case of including an intercept in the model given in (25),

we have

n
S= X |y, =-b, =bx.. =05 (32)

i 1 2%2j 3%5; |

Let k2 be an arbitrary subscript, then, transfer of origin of coor-
dinates to the point related to k2 is done by deviating all observations

from this point. namely,

k2 +
i 5.7 Yo

Y i=l,...,n

k2 .

Kkz X —k
ST T e %

i=l'.--’n

Rearrange terms of (33) and substitute in (32), we have

n
k2 k2 k2 ‘
o iEl Yi "ho¥o; wPgXgy * ¥y, m by = boXo 0 = baXy L) | )
If k2th observation is on the regression plane, then
Yo Py 7 Po¥oxp “P3¥3yp = O 23)

So instead of minimizing (32), the followign function is to be minimized:

Tl o - < - b

k2 k2 k2
i 2¥2i = P3%3;l Sl

Minimization of (36) is completely similar to that of (26) and can be

proceed as follow:

n

k211 k2 . k2 k2 k2
S = ifllxgillyi /X5 = by = bax /%
Il
k2 sl sl
T I a1y "By Baxgy 3
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in which

sl _ k2/xk2
i T 13 ey
(38)
xsl _ xkz/xkz
31 2 5 ¥
. - w4 ; . sl sl ,
Now, again, transfer the origin of the two dimensional Y ~ x3 coordi-
. : i sl sl sl
nates to the arbitrary point kl by deviating ' and Xas from Y11 ‘and
sl
kal as follow:
slkl ' 8l sl 1
Yi - Yi ykl 1=4,...,0
(39)
xslkl 7 T xsl _q
38 %31 T3kl b M s

Rearranging the terms of (39) and substituting them in (37) and assuming

the point kl is on the regression line, we can rewrite (37) as follow:

n
i k2 slkl slkl
Spox1 T 2 |x21|]yi = baX., | (40)
i=1
or, = |
n
y _ k2 slkl,, slkl; slkl -
: Kokl " ifllxzi JEVER b O L b, (41)

-

The objective function (41) can be minimized as suggested by Bidabad [i].
Now, the procedure from (37) to (41l) can be repeated with different values
of kl as the Efficient Algorithm that was proposed for the simple linear
model before. When the last point (M) iﬁ the process of minimizing (41)

is reached, the origin of the three dimensional Y-—Xz--x3 coordinates (k2)
is transferred to this newly found point tM) and the procedure from (33)
to (41) is again repeated with the exception that instead of assigning an
arbitrary value to kl, we set kl equal to the previous value of k2. This

procedure continues until the point found from minimizing (41) is equal

;b. and b

170, 3 can be computed according

to previous of k2. The values of b

-44-



to the followign formulas:

£ slkl  slkl

by =¥y /X3y

L sl G- |

By Yy T Py¥ay (42)
Dy = Yo = PoXoro = Pa¥aps

It should be noted that at each step it can be proved that we are
getting near the minimum of S of (32). The procedure of proof is similar
to that we did for the two parameters model (4). We have, therefore,

omitted the proof here.

To generalize the above algorithm to the m parameters linear model
(2) , we should reduce the number of parameters in the same fashion as the
three parameters model explained above. If the model is restricted, we
can make it unrestricted by dividing all explanatory variables to one of

them.

m

n
S = I - Z b.x.i =
i=1 j=2 1 i

(43)

h o1 3

%23 [¥3/%5g = By= 2 D

48 4
1 e

If the model is unrestricted, we can make it restricted by deviating all

observations from an arbitrary one.

m n m

I
S= I |y,-by~ I b.x.il = I Iy?(m-l) = 0 0 b.x#ém_l)] (44)
i=1 j=2 47 i=1 j=2 I
in which,
k(m-1) _ - =
o5 - ¥ T Yk (m-1) g e
(45)
Jm-1)_ 1,
ji ji jk (m-1)

J=2, eee,Mm
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Therefore, following (43), (44) and (45) any m parameters models can
be reduced to a simple restricted one parameter model and then solved
according to Bidabad [1]. To do this transformation, if the model is un-
restricted, we should deviate all observations from an arbitrary one and
make the model restricted. Then devide all explanatory variables to one
of them. This makes the model unrestricted. At this step we have reduced
one of the parameters of the model. By continuing this process, we can
reduce any m parameters model to a one parameter model. If the model is
restricted we should start by dividing all exlanatory variables by one of
them which makes the model unrestricted. Now we can again reduce one of
the parameters by applying the procedures explained abovehin order to

transform unrestricted model to restricted one.

By solving one parameter model, we can then solve for the two para-

meters model and then three parameters model and so on.

The most delicate part of this proposed algorithm is that, at the
starting point of the algorithm once kl,k2,...,k(m-1l) are selected arbi-
trarily, then the algorithm assigns the best possible values to the in-

tegers kl,k2,...,k(m-1).

To explain the procedure, let us deal with the four parameters un-
restricted linear model. Once, the value of k3 is arbitrarily selected by
deviating all observations from the k3th observation. In this way, the
model reduces to a three parameters restricted model. By deviding all
explanatory variables to one of them, the model becomes completely simi-
lar to that of (32). By minimizing (32) according to the algorithm
previously explained for the three parameters model, the subscript M
corresponding to Mth point is derived. This is the newly found point

which its subscript M is assigned to k3. The previous value of k3 assigned
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to k2 and the previous value of k2 is assigned to k1l and whole procedure

is repeated again. The procedure stops when value of M is equal to k3.

The above important assigning technique which is essential for pivo-
ting the origins of different size coordinates can be extended for more
parameters as we did above. Again, we should note that at each succeeding

step we get near the minimum of S of (2). The proof is omitted here.

3. Evaluations

In comparison with linear programming (LP) method, the proposed
algorithm (PA) is very efficient in execution time, storage requirement
and also time for swapping process. In order to compare these two algo-
rithms 390 random experiments- for different parameters models of type both
restricted and unrestricted have been explored for each algorithm. In each

experiment n normal random number u., have been generated (see, M.J.Mojarrad

i
[?]). Also, nxm, fixed values have been selected for xji which are uni-
formly distributed. yi have been computed for 10 different values of bj's.

Three different sample size of 20,50,100 have been used for n. All runs
have been done on machine BASF 7.68(MVS). The software used to solve the
linear programming is the package MPSX/370 V1M4 PTF7. FORTRAN VS (level
1983, optimizer 03) used to compute the proposed algorithm. The results
are shown in table 1. In each cell of this table the average CPU time of
10 experiments is presented. Table 2 compares the storage requirements for
both algorithms for different sample sizes, different number of parameters

and variables.

-



Table 1.

Comparison of CPU time for LP for different sample sizes and different

number of parameters and variables.

(average of 10 experiments)

— -

par var

no. no.

n=20 n=50 n=100
PA LP PA LP PA LP
0.109 94553 0.212 9.963 0.139 L2527
0.110 9.650 0.127 10,112 0.156 11.809
0.1l1l6 9.607 0.137 9-991 & 9 11.149
0.123 9.6906 0.159 10.199 0.234 12.178
0.126 9.061 0.165 10.098 0.247 11.519
0.134 9.723 0.249 10.394 0.376 12.714
0.141 9.730 0.250 10.123 0.429 L. 815
0.178 9.776 0.384 10.476 0.935 13.306
0.205 9.776 0.494 10.229 1.262 11.936
0.339 9.780 1.106 10.629 2933 13.9853
0.328 9.721 1161 10.430 ? kL 12.310
0.529 9.689 2.163 10.241 6.830 14.039
0.551 9.661 2.106 10.438 5.549 12.841

N N 0 OO0 bW e

2
2
3
3
4
4
5
5
6
6
7
7
8

m——“—m

In both algorithms pre-execution time of complier and linkage-

eidtor have been excluded.
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Table 2.

Comparison of storage requirement for LP and PA for different sample size

and different number of parameters and variables.

-49-

par var n=20 n=50 n=100

no. no. PA LP PA LP PA LP
1 2 4262 59392 4982 71680 6182 86016
2 2 4894 59392 5614 71680 6814 86016
2 3 5240 59392 ©200 71680 7804 86016
3 3 5822 63488 6782 71680 8386 90112
3 4 6046 63488 7126 71680 8930 90112
4 4 6840 63488 7920 71680 9724 90112
4 5 7100 63488 8304 71680 10308 90112
D 5 8084 63488 9288 75776 11292 90112
5 6 8382 63488 . 9706 75776 11948 90112
6 6 9690 63488 11010 75776 13258 94208
6 7 10024 63488 11462 75776 13906 94208
7 7 11508 63488 12960 75776 15416 94208
7 8 11876 63488 13448 75776 16142 94208
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